Аурика Луковкина

Высшая математика. Шпаргалка

Аурика Луковкина
 Высшая математика. Шпаргалка

«Научная книга» 2009

Луковкина А.
Высшая математика. Шпаргалка / А. Луковкина — «Научная книга», 2009
ISBN 978-5-457-77189-5
Настоящее издание поможет систематизировать полученные ранее знания, а также подготовиться к экзамену или зачету и успешно их сдать.

Содержание

 Основные понятия. Системы координат. Прямые линии и их 	5
взаимное расположение	
2. Условие нахождения трех точек на одной прямой. Уравнение	7
прямой. Взаимное расположение точек и прямой. Пучок прямых.	
Расстояние от точки до прямой	
3. Полярные параметры прямой. Нормальное уравнение прямой.	9
Преобразование координат	
4. Порядок алгебраических линий. Окружность. Эллипс. Гипербола.	11
Парабола	
5. Аналитическая геометрия в пространстве. Плоскость	13
6. Прямая в пространстве	15
7. Матрицы и действия над ними	17
8. Определители. Обратная матрица. Вырожденная и	19
невырожденная матрицы. Система линейных уравнений	
9. Числовые последовательности, арифметические действия над	21
ними. Предел последовательности	
10. Ограниченные и неограниченные последовательности.	23
Бесконечно большие и бесконечно малые последовательности	
11. Сходящиеся и расходящиеся последовательности. Предел	25
последовательности	
12. Ряд. Сумма ряда. Сходимость ряда. Арифметические действия	27
над рядами. Ряды с положительными членами	
13. Знакопеременные и знакочередующиеся ряды. Функциональные	29
ряды	
14. Степенные ряды. Тригонометрический ряд. Ряды Фурье	31
Конец ознакомительного фрагмента.	32

Высшая математика. Шпаргалка

1. Основные понятия. Системы координат. Прямые линии и их взаимное расположение

Координата точки — это величина, определяющая положение данной точки на плоскости, на прямой или кривой линии или в пространстве. Значение координаты зависит от выбора начальной точки, от выбора положительного направления и от выбора единицы масштаба.

Прямоугольная система координат состоит из двух взаимно перпендикулярных прямых — осей, точка их пересечения — **начало координат** O, ось OX — ось абсцисс, ось OY — ось ординат. На осях выбираются масштаб и положительное направление.

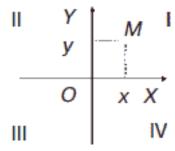


Рис. 1

Системы координат

Положение точки M определяется двумя координатами: абсциссой x и ординатой y. Записывается так: M(x, y). Оси координат образуют четыре координатных угла I, II, III, IV. Если точка находится в I координатном угле (квадранте), то и абсцисса, и ордината ее положительные, если – во II квадранте, то абсцисса отрицательна, а ордината положительна, если в – III квадранте, и абсцисса, и ордината отрицательны, если – в IV квадранте, положительна абсцисса, а ордината отрицательна. У точки, лежащей на оси ординат, абсцисса равна нулю, и наоборот, если точка лежит на оси абсцисс, то ее ордината равна нулю.

Косоугольной системой координат аналогична прямоугольной, только оси координат пересекаются под углом не равным прямому. Прямоугольная и косоугольная системы относятся к декартовой системе координат.

Полярная система координат состоит из полюса O и полярной оси OX, проведенной из полюса. Положение точки определяется полярным радиусом ρ (отрезок OM) и полярным углом φ . Для полярного угла берется его главное значение (от $-\pi$ до π). Числа ρ , φ называются полярными координатами точки M.

Связь между координатами точки в прямоугольной и полярной системах координат: $x = r \cos \varphi$, $y = r \sin \varphi$ или:

$$r = \sqrt{x^2 + y^2}, \cos \varphi = \frac{x}{\sqrt{x^2 + y^2}},$$

$$\sin \varphi = \frac{y}{\sqrt{x^2 + y^2}}, tg\varphi = \frac{x}{y}.$$

Пусть имеются две точки $M_1(x_1, y_1)$ и $M_2(x_2, y_2)$. Расстояние между точками:

$$d = \sqrt{(x_2 - x_1) + (y_2 + y_1)}.$$

Общее уравнение прямой линии (система координат прямоугольная): Ax + By + C = 0 (A и B одновременно не равны нулю).

Если В не равно нулю, то уравнение прямой: y = ax + b (здесь a = -A/B, b = -C/B). Здесь a есть тангенс угла наклона прямой к положительному направлению оси абсцисс, b равно длине отрезка от начала координат до точки пересечения рассматриваемой прямой с осью ординат. Уравнение прямой, параллельной оси абсцисс: y = b, уравнение оси абсцисс: y = 0; уравнение прямой, параллельной оси ординат: x = c, уравнение оси ординат: x = 0.

2. Условие нахождения трех точек на одной прямой. Уравнение прямой. Взаимное расположение точек и прямой. Пучок прямых. Расстояние от точки до прямой

1. Пусть даны три точки A_1 (x_1, y_1) , A_2 (x_2, y_2) , A_3 (x_3, y_3) , тогда условие нахождения их на одной прямой:

$$\begin{vmatrix} x_2 - x_1 & y_2 - y_1 \\ x_3 - x_1 & y_3 - y_1 \end{vmatrix} = 0$$

либо
$$(x_2-x_1)(y_3-y_1)-(x_3-x_1)(y_2-y_1)=0$$
.

2. Пусть даны две точки A_1 (x_1 , y_1), A_2 (x_2 , y_2), тогда уравнение прямой, проходящей через эти две точки:

$$\begin{vmatrix} x_2 - x_1 & y_2 - y_1 \\ x - x_1 & y - y_1 \end{vmatrix} = 0$$

$$(x_2-x_1)(y-y_1)-(x-x_1)(y_2-y_1)=0$$
 или $(x-x_1)/(x_2-x_1)=(y-y_1)/(y_2-y_1)$.

3. Пусть имеются точка $M(x_1, y_1)$ и некоторая прямая L, представленная уравнением y = ax + c. Уравнение прямой, проходящей параллельно данной прямой L через данную точку M:

$$y - y_1 = a(x - x_1)$$
.

Если прямая L задана уравнением Ax + By + C = 0, то параллельная ей прямая, проходящая через точку M, описывается уравнением $A(x - x_1) + B(y - y_1) = 0$.

Уравнение прямой, проходящей перпендикулярно данной прямой \boldsymbol{L} через данную точку M:

$$y - y_1 = -(x - x_1) / a$$

или
 $a(y - y_1) = x_1 - x$.

Если прямая L задана уравнением Ax + By + C = 0, то параллельная ей прямая, проходящая через точку $M(x_1, y_1)$, описывается уравнением $A(y - y_1) - B(x - x_1) = 0$.

- 4. Пусть даны две точки A_1 (x_1 , y_1), A_2 (x_2 , y_2) и прямая, заданная уравнением Ax + By + C = 0. Взаимное расположение точек относительно этой прямой:
- 1) точки A_1 , A_2 лежат по одну сторону от данной прямой, если выражения $(Ax_1 + By_1 + C)$ и $(Ax_2 + By_2 + C)$ имеют одинаковые знаки;
- 2) точки A_1 , A_2 лежат по разные стороны от данной прямой, если выражения $(Ax_1 + By_1 + C)$ и $(Ax_2 + By_2 + C)$ имеют разные знаки;

- 3) одна или обе точки A_1 , A_2 лежат на данной прямой, если одно или оба выражения соответственно $(Ax_1 + By_1 + C)$ и $(Ax_2 + By_2 + C)$ принимают нулевое значение.
- 5. **Центральный пучок** это множество прямых, проходящих через одну точку $M(x_1, y_1)$, называемую **центром пучка**. Каждая из прямых пучка описывается уравнением пучка $y y_1 = \kappa (x x_1)$ (параметр пучка κ для каждой прямой свой).

Все прямые пучка можно представить уравнением: $l(y-y_1) = m(x-x_1)$, где l, m – не равные одновременно нулю произвольные числа.

Если две прямые пучка L_1 и L_2 соответственно имеют вид $(A_1x + B_1y + C_1) = 0$ и $(A_2x + B_2y + C_2) = 0$, то уравнение пучка: $m_1(A_1x + B_1y + C_1) + m_2(A_2x + B_2y + C_2) = 0$. Если прямые L_1 и L_2 пересекающиеся, то пучок центральный, если прямые параллельны, то и пучок параллельный.

6. Пусть даны точка $M(x_1, y_1)$ и прямая, заданная уравнением Ax + By + C = 0. Расстояние d от этой точки M до прямой:

$$d = \frac{Ax_1 + By_1 + C}{\sqrt{A^2 + B^2}}.$$

3. Полярные параметры прямой. Нормальное уравнение прямой. Преобразование координат

Полярными параметрами прямой L будут **полярное расстояние** p (длина перпендикуляра, проведенного к данной прямой из начала координат) и **полярный угол** α (угол между осью абсцисс OX и перпендикуляром, опущенным из начала координат на данную прямую L). Для прямой, представленной уравнением Ax + By + C = 0: полярное расстояние

$$p = \frac{|C|}{\sqrt{A^2 + B^2}},$$

полярный угол α

$$\cos \alpha = \mp \frac{A}{\sqrt{A^2 + B^2}}, \quad \sin \alpha = \mp \frac{B}{\sqrt{A^2 + B^2}},$$

причем при C>0 берется верхний знак, при C<0 – нижний знак, при C=0 знаки берутся произвольно, но либо оба плюса, либо оба минуса.

Нормальное уравнение прямой (уравнение в полярных параметрах) (см. рис. 2): $x \cos \alpha + y \sin \alpha - p = 0$. Пусть прямая представлена уравнением вида Ax + By + C = 0. Чтобы данное уравнение привести к нормальному виду необходимо последнее разделить на выра-

жение
$$\mp \sqrt{A^2 + B^2}$$
 (знак берется в зависимости от знака *C*).

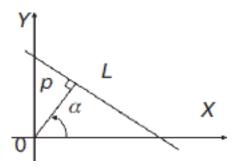


Рис. 2

После деления получается нормальное уравнение данной прямой:

$$\mp \frac{A}{\sqrt{A^2 + B^2}} x \mp \frac{B}{\sqrt{A^2 + B^2}} y - \frac{|C|}{\sqrt{A^2 + B^2}} = 0.$$

Пусть имеется прямая L, которая пересекает оси координат. Тогда данная прямая может быть представлена **уравнением в отрезках** x / a + y / b = 1. Справедливо: если прямая представлена уравнением x / a + y / b = 1, то она отсекает на осях отрезки a, b.

Преобразование координат возможно путем переноса начала координат, или поворотом осей координат, или совместно переносом начала и поворотом осей.

При **переносе начала координат** справедливо следующее правило: старая координата точки равна новой, сложенной с координатой нового начала в старой системе. Например, если старые координаты точки M были x, y, а координаты нового начала в старой системе $O^*(\mathbf{x}_0, \mathbf{y}_0)$, то координаты точки M в новой системе координат с началом в точке O^* будут равны $x-x_0, y-y_0$ т. е. справедливо следующее $x=x^*+x_0, y=y^*+y_0$ или $x^*=x-x_0, y^*=y-y_0$ (* новые координаты точки).

При **повороте осей** на некоторый угол φ справедливы следующие формулы (где x, y – старые координаты точки; x^* , y^* – новые координаты этой же точки):

```
x = x^* \cos \alpha - y^* \sin \alpha;

y = x^* \sin \alpha + y^* \cos \alpha

или

x^* = x \cos \alpha + y \sin \alpha;

y^* = -x \sin \alpha + y \cos \alpha.
```

4. Порядок алгебраических линий. Окружность. Эллипс. Гипербола. Парабола

Линия L, представленная в декартовой системе уравнением n—степени называется алгебраической линией n—порядка.

Окружность с радиусом R и центром в начале координат описывается уравнением: $x^2 + y^2 = R^2$, если центром окружности является некоторая точка C(a, b), то уравнением:

$$(x-a)^2 + (y-b)^2 = R^2$$
.

Чтобы уравнение $Ax^2 + Bx + Ay^2 + Cy + D = 0$ описывало окружность, необходимо, чтобы оно не содержало члена с произведением xy, чтобы коэффициенты при x^2 и y^2 были равны, чтобы $B^2 + C^2 - 4AD > 0$ (при невыполнении данного неравенства уравнение не представляет никакой линии).

Координаты центра окружности, описанной уравнением $Ax^2 + Bx + Ay^2 + Cy + D = 0$ и ее радиус: a = -B/2A, b = -C/2A, $R^2 = (B^2 + C^2 - 4AD)/4A^2$.

Эллипс – сжатая окружность (рис. 3).

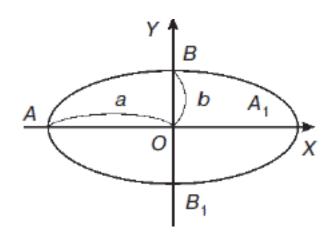


Рис. 3

Прямая AA_1 называется осью сжатия, отрезок $AA_1=2a$ — большой осью эллипса, отрезок $BB_1=2b$ — малой осью эллипса (a>b) точка O — центром эллипса, точки A, A_1 , B, B_1 — вершинами эллипса. Отношение k=b / a коэффициент сжатия величина $\alpha=1-k=(a-b)$ / a — сжатие эллипса. Эллипс обладает симметрией относительно большой и малой осей и относительно своего центра.

Каноническое уравнение эллипса: $x^2 / a^2 + y^2 / b^2 = 1$.

Другое определение эллипса: эллипс есть геометрическое место точек (M), сумма расстояний которых до двух данных точек F, F_1 имеет одно и то же значение 2a ($F_1M + FM = 2a$) (рис. 4).

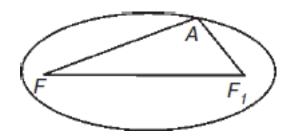


Рис. 4

Точки F и F_1 называются фокусами эллипса, а отрезок FF_1 – фокусным расстоянием, обозначается $FF_1 = 2c$, причем c < a. Эксцентриситет эллипса ε – это отношение фокусного расстояния к большой оси $\varepsilon = c / a$. Эксцентриситет эллипса меньше единицы, имеем: $k^2 = 1 - \varepsilon^2$.

Гипербола — это геометрическое место точек, разность расстояний которых до двух данных точек F, F_1 имеет одно и то же абсолютное значение (рис. 5). $|F_1M - FM| = 2a$. Точки F, F_1 называются фокусами гиперболы, расстояние $FF_1 = 2c$ — фокусным расстоянием. Справедливо: c > a.

Каноническое уравнение гиперболы: $x^2/a^2+y^2/(a^2-c^2)=1$. Асимптоты гиперболы заданы уравнениями y=bx/a и y=-bx/a ($b^2=c^2-a^2$).

Парабола — это геометрическое место точек равноудаленных от данной точки F **(фокуса параболы)** и данной прямой PQ **(директрисы параболы)**. Расстояние от фокуса до директрисы FC называется **параметром параболы** и обозначается p. Вершина параболы — точка O. Каноническое уравнение параболы: $y^2 = 2px$.

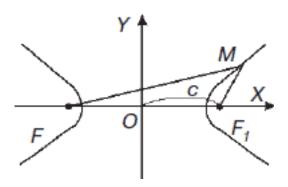


Рис. 5

5. Аналитическая геометрия в пространстве. Плоскость

Всякая поверхность в пространстве определяется уравнением вида f(x, y, z) = 0.

Общее уравнение плоскости: Ax + By + Cz + D = 0. Если A, B, C, D не равны нулю, то уравнение называется **полным**.

При D=0 уравнение Ax+By+Cz=0 определяет плоскость, проходящую через начало координат.

Если A=0, то уравнение определяет плоскость, параллельную оси Ox. Если два из коэффициентов A, B, C равны нулю одновременно, то уравнение определяет плоскость, параллельную одной из координатных плоскостей: при A=0 и B=0 параллельно плоскости xOy, при A=0 и C=0 параллельно xOz, при B=0 и C=0 параллельно yOz. Уравнение Cz=0 определяет плоскость xOy, By=0 — плоскость xOz, Ax=0 — плоскость yOz. Уравнение плоскости в «отрезках»: x/a+y/b+z/c=1. Расстояние от точки $M(x_1,y_1,z_1)$ до плоскости:

$$d = \frac{|Ax_1 + By_1 + Cz_1 + D|}{\sqrt{A^2 + B^2 + C^2}}.$$

Пусть имеются две плоскости $A_1x + B_1y + C_1z + D_1 = 0$ и $A_2x + B_2y + C_2z + D_2 = 0$. Угол φ между этими плоскостями:

$$\cos \varphi = \pm \frac{A_1 A_2 + B_1 B_2 + C_1 C_2}{\sqrt{A_1^2 + B_1^2 + C_1^2} \sqrt{A_2^2 + B_2^2 + C_2^2}}.$$

Условие равенства двух плоскостей: $A_1/A_2 = B_1/B_2 = C_1/C_2 = D_1/D_2$. Условие параллельности плоскостей: $A_1/A_2 = B_1/B_2 = C_1/C_2$. Условие перпендикулярности плоскостей: $A_1A_2 + B_1B_2 + C_1C_2 = 0$. Уравнение плоскости, проходящей через заданную точку $M(x_1, y_1, z_1)$ параллельно плоскости, заданной уравнением Ax + By + Cz + D = 0: $A(x - x_1) + B(y - y_1) + C(z - z_1) + D = 0$. Уравнение плоскости, проходящей через три точки $M_1(x_1, y_1, z_1), M_2(x_2, y_2, z_2), M_3(x_3, y_3, z_3)$:

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x - x_2 & y - y_2 & z - z_2 \\ x - x_3 & y - y_3 & z - z_3 \end{vmatrix} = 0.$$

Уравнение плоскости, проходящей через две точки $M_1(x_1, y_1, z_1)$ и $M_2(x_2, y_2, z_2)$ перпендикулярно к плоскости, заданной уравнением $A_x + B_y + C_z + D = 0$:

$$\begin{vmatrix} x - X_1 & y - y_1 & z - Z_1 \\ X_2 - X_1 & y_2 - y_1 & Z_2 - Z_1 \\ A & B & C \end{vmatrix} = 0.$$

Уравнение плоскости, проходящей через точку M_1 (x_1 , y_1 , z_1) перпендикулярно двум непараллельным плоскостям $A_1x + B_1y + C_1z + D_1 = 0$ и $A_2x + B_2y + C_2z + D_2 = 0$, имеет вид:

$$X - X_1$$
 $Y - Y_1$ $Z - Z_1$
 A_1 B_1 C_1
 A_2 B_2 C_2

Имеем три плоскости, заданные общими уравнениями:

$$\begin{cases} A_1 X + B_1 y + C_1 z + D_1 = 0; \\ A_2 X + B_2 y + C_2 z + D_2 = 0; \\ A_3 X + B_3 y + C_3 z + D_3 = 0. \end{cases}$$

6. Прямая в пространстве

Всякая прямая определяется в пространстве системой двух уравнений

$$\begin{cases} f_1(x, y, z) = 0; \\ f_2(x, y, z) = 0. \end{cases}$$

Канонические (симметричные) уравнения прямой: $(x-x_0)/m = (y-y_0)/p = (z-z_0)/q$, прямая проходит через точку M_0 (x_0, y_0, z_0) . Угол φ между двумя прямыми, заданными каноническими уравнениями:

$$\cos \varphi = \frac{m_1 m_2 + p_1 p_2 + q_1 q_2}{\sqrt{m_1^2 + p_1^2 + q_1^2} \sqrt{m_2^2 + p_2^2 + q_2^2}}.$$

Условие параллельности двух прямых: $m_1 / m_2 = p_1 / p_2 = q_1 / q_2$. Условие перпендикулярности двух прямых: $m_1 m_2 + p_1 p_2 + q_1 q_2 = 0$.

Пусть имеются прямая $(x-x_0)/m = (y-y_0)/p = (z-z_0)/q$ и плоскость Ax + By + Cz + D = 0. Условие параллельности прямой и плоскости: Am + Bp + Cq = 0. Условие перпендикулярности прямой и плоскости: A/m = B/p = C/q. Условие принадлежности прямой плоскости:

$$\begin{cases} Ax_0 + By_0 + Cz_0 + D = 0; \\ Am + Bp + Cq = 0 \end{cases}$$

Если прямая задана параметрически $x = x_0 + mt$, $y = y_0 + pt$, $z = z_0 + qt$, то координаты точки пересечения этой прямой и плоскости Ax + By + Cz + D = 0 определяются по параметрическим уравнениям прямой при подстановке значений t, определенных $(Am + Bp + Cq)t + Ax_0 + By_0 + Cz_0 + D = 0$. Уравнение прямой, проходящей через точки M_1 (x_1, y_1, z_1) и M_2 (x_2, y_2, z_2) : $(x - x_1) / (x_2 - x_1) = (y - y_1) / (y_2 - y_1) = (z - z_1) / (z_2 - z_1)$. Уравнение плоскости, проходящей через точку $M_0(x_0, y_0, z_0)$ перпендикулярно прямой $(x - x_1) / m = (y - y_1) / p = (z - z_1) / q$, имеет вид: $m(x - x_0) + p(y - y_0) + q(z - z_0) = 0$. Уравнение прямой, проходящей через точку $M_0(x_0, y_0, z_0)$ перпендикулярно плоскости Ax + By + Cz + D = 0, имеет вид: $(x - x_0) / A = (y - y_0) / B = (z - z_0) / C$. Уравнение плоскости, проходящей через $M_0(x_0, y_0, z_0)$ и $(x - x_1) / m = (y - y_1) / p = (z - z_1) / q$, не проходящую через M_0 :

$$\begin{vmatrix} x - x_0 & y - y_0 & z - z_0 \\ x_1 - x_0 & y_1 - y_0 & z_1 - z_0 \\ m & p & q \end{vmatrix} = 0.$$

Уравнение плоскости, проходящей через M_0 (x_0 , y_0 , z_0) и параллельной двум прямым:

Уравнение плоскости, проходящей через $(x-x_1)$ / $m_1=(y-y_1)$ / $p_1=(z-z_1)$ / q_1 и параллельной $(x-x_2)$ / $m_2=(y-y_2)$ / $p_2=(z-z_2)$ / q_2 имеет вид:

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ m_1 & p_1 & q_1 \\ m_2 & p_2 & q_2 \end{vmatrix} = 0.$$

Уравнение плоскости, проходящей через $(x-x_1)/m_1=(y-y_1)/p_1=(z-z_1)/q_1$ перпендикулярно Ax+By+Cz+D=0;

7. Матрицы и действия над ними

Матрицей размерности $m \times n$ называется прямоугольная таблица вида:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix},$$

или $A = (a_{ij})$, где i = 1, 2..., m; j = 1, 2..., n. Числа a_{ij} — называются элементами матрицы. Если m = 1, а n > 1, то матрица является матрицей—строкой. Если m > 1, а n = 1, то матрица является матрицей—столбцом. Если m = n, то матрица называется квадратной, а число ее строк (или столбцов) называется порядком матрицы.

Две матрицы A и B называются **равными**, если их размер одинаков и $a_{ij} = b_{ij}$. **Нулевая матрица** — это матрица, у которой все элементы равны нулю.

Единичной матрицей называется квадратная матрица:

$$E = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & \dots & 1 \end{pmatrix}.$$

Матрицей, **транспонированной** к матрице A размерности $m \times n$ называется матрица A^{T} размерности $n \times m$, полученная из матрицы A если ее строки записать в столбцы а столбцы – строки.

Матрицы одинакового размера **(однотипные)** можно складывать, вычитать, перемножать и умножать на число.

Суммой (разностью) двух однотипных матриц A и B называется матрица C, элементы которой равны сумме или разности $c_{ij} = a_{ij} \pm b_{ij}$. При сложении справедливы:

$$A + B = B + A$$
, $(A + B) + C = A + (B + C)$, $A + 0 = A$.

Произведением матрицы A **на число** p называется матрица, элементы которой равны pa_{ij} .

Справедливы свойства:

$$\alpha(\beta A) = (\alpha \beta)A;$$

$$(A + B)\alpha = \alpha A + \alpha B$$
;

$$(\alpha + \beta)A = \alpha A + \beta A.$$

Произведением двух квадратных матриц A и B называется матрица C, элемент которой, находящийся на пересечении i-ой строки и k-го столбца, является суммой парных про-

изведений элементов i—ой строки первой матрицы на элемент k—ой строки второй матрицы C = AB. То же правило распространяется на умножение прямоугольных матриц, у которых число столбцов матрицы—множимого равно числу строк матрицы—множителя.

Матрицы, для которых AB = BA, называются **коммутирующими**.

Справедливы свойства:

- 1) EA = AE = A;
- 2) A(BC) = (AB)C;
- 3) a(AB) = (aA)B = A(aB);
- 4) $(A_1 + A_2)B = A_1B + A_2B$, $A(B_1 + B_2) = AB_1 + AB_2$;
- 5) A0 = 0A = 0;
- 6) $(AB)^{T} = A^{T}B^{T}$.

При умножении двух ненулевых матриц может получиться нулевая матрица.

8. Определители. Обратная матрица. Вырожденная и невырожденная матрицы. Система линейных уравнений

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

Определителем второго порядка, соответствующим матрице называется число, равное

$$|A| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{22}.$$

Свойства определителя:

- 1) величина определителя не меняется, если заменить его строки соответствующими столбцами или если к элементам какой—либо его строки или столбца прибавить соответствующие элементы другой строки или столбца, умноженные на одно и тоже число;
 - 2) определитель поменяет знак при перемене мест его строк или столбцов;
- 3) определитель будет равен нулю, если элементы какого—либо столбца (или строки) равны нулю или элементы двух строк (или столбцов) соответственно равны.

Минором M_{ik} элемента a_{ik} определителя IAI называется определитель полученный из A вычеркиванием той строки и того столбца которым принадлежит этот элемент.

Алгебраическим дополнением A_{ik} элемента a определителя |A| называется его минор, взятый со знаком $(-1)^{i+k}$, $A = (-1)^{i+k} M_{ik}$.

Определителем n-порядка, соответствующим квадратной матрице n-го порядка, называется число, равное сумме парных произведений элементов какой-либо строки (столбца) на их алгебраические дополнения.

Теорема. Если A и B — квадратные матрицы одного порядка с определителями |A| и |B|, то определитель матрицы C = AB равен: |C| = |A| |B|.

Обратной матрицей для квадратной матрицы A называется матрица A^{-1} , которая удовлетворяет условиям $AA^{-1} = A^{-1}A = E$. Матрица A называется **вырожденной**, если ее определитель |A| равен нулю.

Теорема. Матрица

$$\begin{pmatrix} A_{11}/|A| & A_{21}/|A| & \dots & A_{n1}/|A| \\ A_{12}/|A| & A_{22}/|A| & \dots & A_{n2}/|A| \\ \dots & \dots & \dots & \dots \\ A_{1n}/|A| & A_{2n}/|A| & \dots & A_{nn}/|A| \end{pmatrix},$$

где A_{ik} – алгебраическое дополнение элемента a_{ik} невырожденной матрицы A, является обратной для A.

Пусть дана система n линейных уравнений с n неизвестными:

$$\begin{cases} a_{11}X_1 + a_{12}X_2 + \dots + a_{1n}X_n = b_1; \\ a_{21}X_1 + a_{22}X_2 + \dots + a_{2n}X_n - b_2; \\ \dots \\ a_{n1}X_1 + a_{n2}X_2 + \dots + a_{nn}X_n = b_n. \end{cases}$$

9. Числовые последовательности, арифметические действия над ними. Предел последовательности

Если каждому значению n из натурального ряда чисел -1, 2, n — ставится в соответствие по определенному закону некоторое вещественное число a, то множество занумерованных вещественных чисел $-a_1$, a_2 , a_n — называется **числовой последовательностью** (последовательностью), числа a_n называются **элементами** или **членами** последовательности.

Числовая последовательность:

 $\{a_n\}, a_n = f(n),$

где n = 1, 2, 3... – номер члена последовательности.

Способы задания последовательностей:

- 1) аналитический (с помощью формулы *n*–члена);
- 2) рекуррентный (путем задания первого члена или нескольких членов и формулы для определения любого члена по известным членам);
 - 3) словесный.

Суммой, разностью, произведением и частным двух последовательностей $\{x_n\}$ и $\{y_n\}$ называются соответственно следующие последовательности: $\{x_n + y_n\}$, $\{x_n - y_n\}$, $\{x_n \times y_n\}$, $\{x_n / y_n\}$, в случае частного $y_n \neq 0$. Если в нуль обращается лишь конечное число членов последовательности знаменателя, то частное определяется с номера, отличного от нуля члена последовательности.

Последовательность называется возрастающей (убывающей), если для любого n выполняется условие: $a_{n+1} > a_n$ ($a_{n+1} < a_n$). Возрастающие и убывающие последовательности называются строго монотонными.

Последовательность называется **невозрастающей (неубывающей)**, если для любого n выполняется условие: $a_{n+1} \le a_n$ ($a_{n+1} \ge a_n$).

Невозрастающие и неубывающие последовательности называются монотонными.

Последовательность $\{a_n\}$ называется **сходящейся**, если существует такое число A, что для любого положительного числа $\varepsilon > 0$ найдется такой номер N, что при всех $n > N |a_n - A| < \varepsilon$. Если последовательность не сходится, то она называется **расходящейся**.

Число A называется **пределом последовательности** $\{a_n\}$, если для $\varepsilon > 0$ существует такое натуральное число N, что при всех $n > N \, |a_n - A| < \varepsilon$. Обозначение предела последова-

$$\lim_{n\to\infty} a_n = A$$

Теорема. Всякая сходящаяся последовательность имеет только один предел.

Для подпоследовательностей справедливо:

- 1) если последовательность сходится к пределу A, то и ее подпоследовательность сходится к пределу A;
- 2) если все подпоследовательности некоторой последовательности сходятся, то все они сходятся к одному и тому же пределу и к нему же сходится исходная последовательность.

Теорема. Предел суммы (разности), произведения и частного равен сумме (разности),

$$\lim_{n\to\infty} a_n = A \quad \text{И} \quad \lim_{n\to\infty} b_n = B$$
произведению и частному пределов, т. е., если $n\to\infty$

$$\lim_{n\to\infty}(a_n\pm b_n)=A\pm B\;;\;\;\lim_{n\to\infty}(ca_n)=cA\;\;;$$
, где c – постоянная;

$$\lim_{n\to\infty} (a_n b_n) = AB$$
; $\lim_{n\to\infty} (an/bn) = A/B$ при $B \neq 0$.

10. Ограниченные и неограниченные последовательности. Бесконечно большие и бесконечно малые последовательности

Последовательность $\{a_n\}$ называется **ограниченной сверху (снизу)**, если существует число M(m) такое, что для любого n $a_n \le M$ $(a_n \ge m)$. Число M(m) называется верхней (нижней) границей последовательности $\{a_n\}$.

Последовательность $\{a_n\}$ называется **ограниченной**, если она ограничена и сверху, и снизу.

Теорема. Последовательность $\{a_n\}$ ограничена тогда и только тогда, когда существует число r > 0 такое, что $|a_n| < r$ для всех n.

Теорема. Свойства ограниченности последовательности сверху, снизу и с двух сторон не нарушатся при отбрасывании (добавлении) конечного числа членов последовательности.

Теорема. Сумма двух ограниченных последовательностей есть ограниченная последовательность.

Последовательность $\{a_n\}$ называется **бесконечно малой**, если для любого положительного ε существует такой номер N, что, начиная с него, для всех членов последовательности справедливо $|a_n| < \varepsilon$.

Последовательность $\{a_n\}$ называется **бесконечно большой**, если для любого положительного P существует такой номер N, что, начиная с него, для всех членов последовательности справедливо $|a_n| < P$.

Предел бесконечно большой последовательности при $n > \infty$ равен ∞ .

Бесконечно большая последовательность не ограничена и, следовательно, расходится.

Теорема о связи бесконечно большой и бесконечно малой последовательностей. Для того чтобы последовательность $\{a_n\}$ была бесконечно большой, необходимо и достаточно, чтобы последовательность $\{b_n\}$ $b_n = 1 / a_n$ была бесконечно малой.

Теорема. Если $\{a_n\}$ – бесконечно большая последовательность, а $\{b_n\}$ – сходящаяся последовательность, не являющаяся бесконечно малой, то их произведение есть бесконечно большая последовательность.

Свойства бесконечно малых последовательностей:

$$\lim a_n = 0$$

- 1) предел бесконечно малой последовательности равен нулю: $n \to \infty$ 2) стационарная последовательности равен нулю:
- 2) стационарная последовательность c, c, ..., c, ... является бесконечно малой тогда, когда c = 0;
- 3) свойство последовательности быть бесконечно малой не нарушится, если отбросить (прибавить) конечное число членов;
- 4) пусть $\{b_n\}$ бесконечно малая последовательность и для всех п справедливо $a_n \le b_n$, тогда последовательность $\{a_n\}$ тоже является бесконечно малой;
 - 5) бесконечно малая последовательность ограниченна;
- 6) сумма (разность) двух бесконечно малых последовательностей есть бесконечно малая последовательность;
- 7) пусть $\{a_n\}$ бесконечно малая последовательность, $\{b_n\}$ ограниченная последовательность, тогда их произведение есть бесконечно малая последовательность;
- 8) пусть $\{a_n\}$ бесконечно малая последовательность, а c любое действительное число, тогда последовательность $\{ca_n\}$ тоже бесконечно мала;

9) произведение любого конечного числа бесконечно малых последовательностей есть бесконечно малая последовательность.

11. Сходящиеся и расходящиеся последовательности. Предел последовательности

Последовательность $\{a_n\}$ называется **сходящейся**, если существует такое вещественное число A, что последовательность $\{a_n - A\}$ является бесконечно малой. Число A будет

$$\lim_{n\to\infty} a_n = A$$
 пределом последовательности: $n\to\infty$. Сходящуюся последовательность можно пр

Сходящуюся последовательность можно представить в виде $\{a_n\} = \{A + \gamma_n\}$, где $\{\gamma_n\}$ – бесконечно малая последовательность.

Бесконечно малые последовательности являются сходящимися с пределом, равным нулю, бесконечно большие — **расходящимися** (сходящимися к бесконечности).

Точка бесконечной прямой называется **предельной точкой последовательности**, если в любой ее ε —окрестности содержится бесконечно много элементов данной последовательности.

Лемма. Каждая сходящаяся последовательность имеет только одну предельную точку, совпадающую с ее пределом.

Основные свойства сходящихся последовательностей:

- 1) всякая сходящаяся последовательность имеет один предел;
- 2) сходящаяся последовательность $\{a_n\}$ ограниченна;
- 3) пусть последовательности $\{a_n\}$ и $\{b_n\}$ сходятся и $\lim_{n\to\infty} a_n = A$, $\lim_{n\to\infty} b_n = B$, тогда сходятся и последовательности $\{cx_n\}$ $\{c = const\}$ $\{a_n \pm b_n\}$ $\{a_n \times b_n\}$ $\{a_n \wedge b_n\}$ (в случае частного $B \neq 0$, $b_n \neq 0$, n = 1, 2, ...). И их пределы вычисляются по общим правилам.

Теорема сравнения (предельный переход в неравенствах). Пусть заданы последовательности $\{a_n\}$, $\{b_n\}$. Тогда если последовательности $\{a_n\}$, $\{b_n\}$ таковы, что $a_n \le (\ge) b_n$, то

lim $a_n \le (\ge)$ lim b_n (данное утверждение неверно для строгих неравенств). Теорема (принцип двустороннего ограничения). Пусть заданы последовательности $\{a_n\}$, $\{b_n\}$, $\{c_n\}$. Тогда если $a_n \le b_n \le c_n$ и последовательности $\{a_n\}$ и $\{c_n\}$ сходятся к

одному и тому же пределу
$$B$$
, то последовательность $\{b_n\}$ тоже сходится к тому же пределу:
$$\lim_{n\to\infty} \{a_n\} = \lim_{n\to\infty} \{b_n\} = \lim_{n\to\infty} \{c_n\} = B$$

Следствия:

1) если все члены сходящейся последовательности $\{a_n\}$ не отрицательны (не положительны), то предел последовательности есть число неотрицательное (неположительное),

$$\lim_{n\to\infty}a_n\geq 0\ (\lim_{n\to\infty}a_n\leq 0)$$

2) если все элементы сходящейся последовательности $\{a_n\}$ находятся на отрезке [a,b],

то и предел этой последовательности $\{a_n\}$ лежит на данном отрезке, $n \to \infty$ 3) если все члени охоломожения

3) если все члены сходящейся последовательности $\{a_n\}$ $a_n \leq (i)$ B, то $\lim_{n\to\infty} a_n \leq (i)$ B, тре B – некоторое число.

Теорема о сходимости монотонной ограниченной последовательности. Всякая неубывающая (невозрастающая) последовательность $\{a_n\}$, ограниченная сверху (снизу) сходится. Иначе для того чтобы монотонная последовательность сходилась необходимо и достаточно, чтобы она была ограниченна.

12. Ряд. Сумма ряда. Сходимость ряда. Арифметические действия над рядами. Ряды с положительными членами

 $\sum_{i=1}^{\infty}$

Числовым рядом называется выражение i=1 $a_i = a_1 + a_2 + ... + a_n + ...$, где a_i (i=1, 2..., n...) — вещественные или комплексные числа.

Частичной суммой ряда (n-ой частичной суммой) называется число $S_n = a_1 + a_2 + \dots$

$$+ a_n = \sum_{i=1}^{n} a_i.$$

Из частичных сумм можно образовать последовательность $S_1 = a_1$, $S_2 = a_1 + a_2$, $S_3 = a_1 + a_2 + a_3$ и т. д. Если существует предел последовательности частичных сумм ряда, то ряд назы-

вается **сходящимся**, а сам предел называется **суммой ряда**, обозначается Если такового предела не существует, то ряд называется расходящимся.

Теорема. На сходимость ряда не влияет отбрасывание конечного числа его членов. Если ряд сходится, то его *n*—ый член стремится к нулю при неограниченном возраста-

$$\lim_{n, \text{ т. e. } n \to \infty} a_n = 0 \sum_{n=1}^{\infty} \sum_{n=1}^{\infty} a_n \text{ и } n=1 b_n. \text{ Тогда в результате}$$

сложения этих двух рядов получится ряд n=1 ($a_n + b_n$), при умножении получается ряд

$$\sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} a_k b_{n-k} \right)$$
, произведением ряда $\sum_{n=1}^{\infty} a_n$ на число c будет ряд $\sum_{n=1}^{\infty} ca_n$ (c – вещественное или комплексное число).

Теорема. Пусть даны два ряда, имеющие соответствующие суммы n=1 $a_n = S_1$ и n=1 b_n

$$\sum_{n=1}^{\infty} \sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} a_k b_{n-k} \right) = S_1 S_2 \sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} a_k b_{n-k} \right) = S_1 S_2 \sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} a_k b_{n-k} \right) = S_1 S_2 \sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} a_k b_{n-k} \right) = S_1 S_2 \sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} a_k b_{n-k} \right) = S_1 S_2 \sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} a_k b_{n-k} \right) = S_1 S_2 \sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} a_k b_{n-k} \right) = S_1 S_2 \sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} a_k b_{n-k} \right) = S_1 S_2 \sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} a_k b_{n-k} \right) = S_1 S_2 \sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} a_k b_{n-k} \right) = S_1 S_2 \sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} a_k b_{n-k} \right) = S_1 S_2 \sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} a_k b_{n-k} \right) = S_1 S_2 \sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} a_k b_{n-k} \right) = S_1 S_2 \sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} a_k b_{n-k} \right) = S_1 S_2 \sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} a_k b_{n-k} \right) = S_1 S_2 \sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} a_k b_{n-k} \right) = S_1 S_2 \sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} a_k b_{n-k} \right) = S_1 S_2 \sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} a_k b_{n-k} \right) = S_1 S_2 \sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} a_k b_{n-k} \right) = S_1 S_2 \sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} a_k b_{n-k} \right) = S_1 S_2 \sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} a_k b_{n-k} \right) = S_1 S_2 \sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} a_k b_{n-k} \right) = S_1 S_2 \sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} a_k b_{n-k} \right) = S_1 S_2 \sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} a_k b_{n-k} \right) = S_1 S_2 \sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} a_k b_{n-k} \right) = S_1 S_2 \sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} a_k b_{n-k} \right) = S_1 S_2 \sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} a_k b_{n-k} \right) = S_1 S_2 \sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} a_k b_{n-k} \right) = S_1 S_2 \sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} a_k b_{n-k} \right) = S_1 S_2 \sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} a_k b_{n-k} \right) = S_1 S_2 \sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} a_k b_{n-k} \right) = S_1 S_2 \sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} a_k b_{n-k} \right) = S_1 S_2 \sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} a_k b_{n-k} \right) = S_1 S_2 \sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} a_k b_{n-k} \right) = S_1 S_2 \sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} a_k b_{n-k} \right) = S_1 S_2 \sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} a_k b_{n-k} \right) = S_1 S_2 \sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} a_k b_{n-k} \right) = S_1 S_2 \sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} a_k b_{n-k} \right) = S_1 S_2 \sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} a_k b_{n-k} \right) = S_1 S_2 \sum_{$$

Теорема (принцип сравнения). Пусть даны два ряда с положительными членами $\sum_{n=1}^{\infty} \sum_{a_n \in A_n} \sum_{n=1}^{\infty} \sum_{a_n \in A_n} \sum_{n=1}^{\infty} \sum_{a_n \in A_n} \sum_{n=1}^{\infty} \sum_{a_n \in A_n} \sum_{n=1}^{\infty} \sum_{$

Теорема. Если члены ряда i=1 a_i не меньше соответствующих членов расходящегося $\sum_{n=1}^{\infty} \sum_{n=1}^{\infty} a_n$ ряда n=1 a_n расходится.

13. Знакопеременные и знакочередующиеся ряды. Функциональные ряды

Знакопеременный ряд – это ряд с произвольными вещественными числами.

Знакопеременный ряд называется абсолютно сходящимся, если сходится ряд, составленный из абсолютных величин его членов.

Знакопеременный ряд называется условно сходящимся, если он сходится, а ряд, составленный из абсолютных величин его членов, расходится.

Теорема. Всякий абсолютно сходящийся знакопеременный ряд есть ряд сходящийся.

Теорема. Если знакопеременный ряд сходится абсолютно, то он остается абсолютно сходящимся при любой перестановке его членов. При этом сумма ряда не зависит от порядка его членов.

Теорема. Если знакопеременный ряд сходится условно, то какое бы ни задали число A, можно так переставить члены этого ряда, чтобы его сумма в точности оказалась бы равной A. Кроме этого, можно так переставить члены условно сходящегося ряда, что после перестановки ряд окажется расходящимся.

Ряд с вещественными членами называется знакочередующимся, если два любых его

соседних члена имеют разные знаки. Его иногда записывают следующим образом: n=1 (– 1) $^{n+1}a_n$ ($a_i > 0$).

Теорема (признак сходимости Лейбница). Если члены знакочередующегося ряда

$$\sum_{n=1}^{\infty} a_n \text{ удовлетворяют условиям } |a_n| > |a_n+1| \ (n=1,\,2...) \text{ и } n\to\infty \ a_n = 0, \text{ то ряд сходится.}$$

$$\sum_{n=1}^{\infty} a_n = S$$
, то $\left| \sum_{k=1}^{\infty} a_k - S \right| < \left| a_{n+1} \right|$.

 \sum

Ряд $n=1u_n(x)$ называется **функциональным**, если его члены являются функциями действительной переменной x.

Областью сходимости функционального ряда называется совокупность тех значений x, при которых функциональный ряд сходится. Если функциональный ряд сходится при $x = x_0$, то x_0 называется **точкой сходимости**. Если ряд сходится в каждой точке некоторого множества, то говорят, что ряд **сходится на этом множестве**.

Функциональный ряд называется равномерно сходящимся на множестве M к функции S(x), если для всякого положительного ε найдется такое число N, что для всех n > N и для всех x, принадлежащих множеству M, справедливо неравенство:

$$\sum_{n=1}^{\infty} u_n(x) - S(x) < \varepsilon$$

Теорема. Если члены ряда n=1 $u_n(x)$ — непрерывные функции и ряд на множестве M сходится равномерно, то и S(x) = n=1 $u_n(x)$ является непрерывной функцией.

14. Степенные ряды. Тригонометрический ряд. Ряды Фурье

Степенным рядом называется функциональный ряд вида $a_0 + a_1(x - x_0) + a_2(x - x_0)^2$

 $\sum_{k=0}^{n} a_k (x-x_0)^n + \ldots = k=0$ $a_k (x-x_0)^k$. Числа a_i (i=0,1,2...) называются коэффициентами ряда. Число R называется радиусом сходимости.

Свойства степенных рядов.

Теорема 1. Если степенной ряд k=0 $a_k(x-x_0)^k$ имеет радиус сходимости R, то в любом круге комплексной плоскости (или на любом отрезке вещественной оси) вида $|x-x_0| < r$, r < R он равномерно сходится.

Теорема 2. Если для степенного ряда k=0 a_k $(x-x_0)^k$ существует предел

$$L = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$$
, то он равен радиусу сходимости данного ряда, т. е. $L = R$.

Следствие

1. На множестве $\{x | |x-x_0| \le r\}$, $r \le R$ сумма степенного ряда является непрерывной функцией.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.