

Вся геометрия

9 класса в кратком изложении

(к учебнику Л.С. Атанасяна и др.)

Вся геометрия

Tlamamra

9 класса в кратком изложении

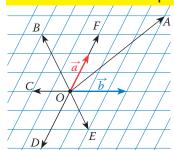
(к учебнику Л.С. Атанасяна и др.)

СОДЕРЖАНИЕ

Разложение вектора по двум неколлинеарным векторам \overrightarrow{a} и \overrightarrow{b} 1
Декартовы координаты на плоскости 1
Действия над векторами
Нахождение координат вектора \overrightarrow{AB}
Расстояние между двумя точками
Уравнение окружности
Координаты середины отрезка
Sin α , cos α , tg α , где $0^{\circ} \leqslant \alpha \leqslant 180^{\circ}$
Теорема синусов и косинусов

Скалярное произведение векторов 4
Скалярное произведение векторов, заданных в координатах4
Уравнение прямой в общем виде $ax + by = c$, где a,b,c – числа4
Многоугольники. Длина окружности. Площадь круга5
Формулы для правильного многоугольника 5
Движение6
Многогранники7
Тела вращения

Разложение вектора по двум неколлинеарным векторам \overrightarrow{a} и \overrightarrow{b}



$$\overrightarrow{OA} = 2\overrightarrow{a} + \overrightarrow{b}$$

$$\overrightarrow{OB} = 1.5\overrightarrow{a} - \overrightarrow{b}$$

$$\overrightarrow{OC} = 0 \cdot \overrightarrow{a} - \frac{2}{3} \overrightarrow{b}$$

$$\overrightarrow{OF} = 1.5\overrightarrow{a} - 0 \cdot \overrightarrow{b}$$

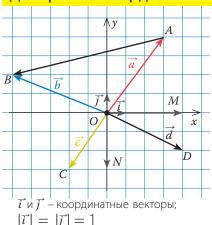
$$\overrightarrow{OE} = -\overrightarrow{a} + \frac{2}{3}\overrightarrow{b}$$

$$\overrightarrow{OB} = 1.5 \overrightarrow{a} - \overrightarrow{b}$$
 \overrightarrow{p} – любой вектор;

$$\overrightarrow{OC} = 0 \cdot \overrightarrow{a} - \frac{2}{3} \overrightarrow{b}$$
 $\overrightarrow{p} = x \overrightarrow{a} + y \overrightarrow{b}$, где x и y — числа;

$$\overrightarrow{p}$$
 разлагается единственным способом.

Декартовы координаты на плоскости



Координаты вектора

$$\overrightarrow{a} \{3;4\}$$

$$\overrightarrow{b} \{-5;2\}$$

$$\overrightarrow{ON} \{0;-3\}$$

$$\begin{array}{l}
ON\{0;-3\} \\
\overrightarrow{d}\{4;-2\} \\
\overrightarrow{OM}\{4;0\}
\end{array}$$

$$\overrightarrow{AB}$$
{-8;-2}

$$\overrightarrow{CD}$$
 { 6; 1}

Разложение вектора

$$|\overrightarrow{a} = 3\overrightarrow{i} + 4\overrightarrow{j}|$$

$$|\overrightarrow{b} = -5\overrightarrow{i} + 2\overrightarrow{j}|$$

$$|\overrightarrow{b}| = \sqrt{(-5)^2 - 3}$$

$$|\overrightarrow{d} = 4\overrightarrow{i} - 2\overrightarrow{j}|$$

$$|\overrightarrow{ON}| = 3$$

$$|\overrightarrow{d}| = \sqrt{4^2 + 3}$$

$$|\overrightarrow{OM}| = 4\overrightarrow{i}|$$

$$|\overrightarrow{OM}| = 4$$

$$|\overrightarrow{AB}| = -8\overrightarrow{i} - 2\overrightarrow{j}|$$

$$|\overrightarrow{AB}| = \sqrt{68}$$

$$|\overrightarrow{CD}| = 6\overrightarrow{i} + \overrightarrow{j}|$$

$$|\overrightarrow{CD}| = \sqrt{37}$$

Длина вектора

$$|\overrightarrow{a}| = \sqrt{3^2 + 4^2} = 5$$

$$|\overrightarrow{b}| = \sqrt{(-5)^2 + 2^2} = \sqrt{29}$$

$$|\overrightarrow{ON}| = 3$$

$$|\overrightarrow{d}| = \sqrt{4^2 + (-2)^2} = \sqrt{20}$$

$$|\overrightarrow{OM}| = 4$$

$$|\overrightarrow{AB}| = \sqrt{68}$$

$$|\overrightarrow{CD}| = \sqrt{37}$$

$$\overrightarrow{a}$$
{x;y}; $|\overrightarrow{a}| = \sqrt{x^2 + y^2}$

Действия над векторами

$$\overrightarrow{a}$$
{ x_1 ; y_1 } = $x_1\overrightarrow{i}$ + $y_1\overrightarrow{j}$

$$\overrightarrow{b}$$
 { x_2 ; y_2 } = $x_2\overrightarrow{i}$ + $y_2\overrightarrow{j}$

1.
$$\overrightarrow{a} + \overrightarrow{b} = (x_1 + x_2)\overrightarrow{i} + (y_1 + y_2)\overrightarrow{j}$$

$$\underline{2}. \overrightarrow{a} - \overrightarrow{b} = (x_1 - x_2)\overrightarrow{i} + (y_1 - y_2)\overrightarrow{j}$$

3.
$$k\overrightarrow{a}$$
 { kx₁ ; ky₁ }, где k — число

Нахождение координат вектора \overrightarrow{AB}

Пусть O – начало координат,

$$B\{x_2; y_2\}, A\{x_1; y_1\}$$

Обозначим
$$\overrightarrow{OB} = \overrightarrow{b}$$
, $\overrightarrow{OA} = \overrightarrow{a}$

Тогда
$$\overrightarrow{AB} = (\overrightarrow{b} - \overrightarrow{a}) \{x_2 - x_1; y_2 - y_1\}$$

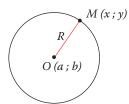
Расстояние между двумя точками

 $A \{ x_1; y_1 \}$

 $B\{x_2; y_2\}$

$$AB = |\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Уравнение окружности



$$OM = R = \sqrt{(x-a)^2 + (y-b)^2}$$

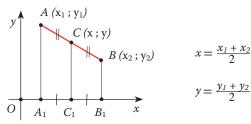
$$(x-a)^2 + (y-b)^2 = R^2$$

уравнение окружности с центром в точке (a;b) радиуса R

$$x^2 + y^2 = R^2$$

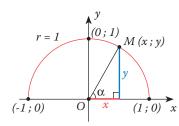
уравнение окружности с центром в начале координат (0;0) радиуса R

Координаты середины отрезка



по теореме Фалеса

Sin α , cos α , tq α , где $0^{\circ} \le \alpha \le 180^{\circ}$



1. α – острый угол, тогда $\sin \alpha = \frac{y}{1} = y$; $\cos \alpha = \frac{x}{1} = x$; $tg \alpha = \frac{\sin \alpha}{\cos \alpha}$

Получили формулы: $sin \alpha = y$

$$\cos \alpha = x$$
$$tg \alpha = \frac{\sin \alpha}{\cos \alpha}$$

2. Определим значения $\sin \alpha$, $\cos \alpha$, $tg \alpha$ этими формулами для любого угла α , принадлежащего отрезку [0°; 180°]:

3. Формулы приведения. (Постарайтесь доказать эти формулы, используя чертежи).

$$\sin(90^\circ - \alpha)$$

$$\sin 0^{\circ} = 0$$

$$\cos 0^{\circ} = 1$$

$$tg 0^{\circ} = 0$$

$$\sin 90^\circ = 1$$
 $\cos 90^\circ = 0$
 $tg 90^\circ$ не имеет смысла

$$sin 180^{\circ} = 0$$

$$cos 180^{\circ} = -1$$

$$tg 180^{\circ} = 0$$

$$sin (90^{\circ} - \alpha) = cos \alpha$$

$$cos (90^{\circ} - \alpha) = sin \alpha$$

$$sin (180^{\circ} - \alpha) = sin \alpha$$

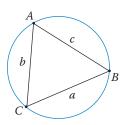
$$cos (180^{\circ} - \alpha) = -cos \alpha$$

4. Полуокружность является дугой окружности $x^2 + y^2 = 1 \implies$ любого угла α , принадлежащего отрезку [0°; 180°]

 $sin^2\alpha + cos^2\alpha = 1$ выполняется для

Эта формула называется основным тригонометрическим тождеством

Теорема синусов и косинусов



Теорема синусов:

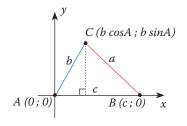
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$$

Для доказательства использовать формулы:

$$S_{\triangle} = \frac{1}{2} ab \, sin C = \frac{1}{2} ac \, sin B = ..., \,$$
а также задачу № 1033

Теорема косинусов:

$$a^2 = b^2 + c^2 - 2bc \cos A$$



Доказательство

Запишем квадрат расстояния между точками В и С, координаты которых известны:

$$CB^{2} = (b \cos A - c)^{2} + (b \sin A)^{2} = b^{2} \cos^{2} A - 2bc \cos A + c^{2} + b^{2} \sin^{2} A =$$

$$= b^{2} \underbrace{(\cos^{2} A + \sin^{2} A)}_{=1} + c^{2} - 2bc \cos A, \quad u.m.\partial.$$