И.И. Дедов, С.Ю. Калинченко

Возрастной андрогенный дефицит у мужчин

УДК 616.69 ББК 56.9 Д21

Дедов И.И. — д-р мед. наук, профессор, академик РАН, Президент Российской ассоциации эндокринологов, Президент «НМИЦ эндокринологии» Минздрава России.

Калинченко С.Ю. — д-р мед. наук, профессор, заведующая кафедрой эндокринологии РУДН, вице-президент Международного общества по изучению вопросов старения мужчин (ISSAM).

Дедов И.И.

Д21 Возрастной андрогенный дефицит у мужчин : монография / И.И. Дедов, С.Ю. Калинченко. — 2-е изд., дополненное. — М.: Практическая медицина, 2020. - 336 с.: ил.

ISBN 978-5-98811-587-8

Монография, посвященная проблеме возрастного андрогенного дефицита, написанная и изданная в 2006 г., не только опередила время, но и стала научной сенсацией, а также настольной книгой всех урологов России.

Возрастной андрогенный дефицит, несмотря на высокую распространенность, изучен недостаточно полно. Актуальность проблемы связана с тем, что дефицит андрогенов проявляется не только нарушением половой функции, но и ассоциирован со многими возрастными заболеваниями (ожирение, сахарный диабет, ИБС, остеопороз и др.), ухудшая их течение и прогноз.

За 13 лет, прошедших с выхода издания, проблема возрастного андрогенного дефицита вышла за рамки эндокринологии и стала междисциплинарной, и не только не потеряла актуальности, но и, в связи с глобальным старением общества, а также появлением понятия «качество жизни», стала социальной, в связи с чем назрела необходимость переиздания монографии.

Основной текст монографии переиздается в неизменном виде, а новый опыт, накопленный с 2006 г., представлен в Приложениях к изданию.

Для эндокринологов, андрологов, сексопатологов, урологов, геронтологов и специалистов по репродуктивной и антивозрастной медицине.

УДК 616.69 ББК 56.9

Книга рекомендована ISSAM.

[©] Дедов И.И., Калинченко С.Ю., 2019

[©] практическая медицина, оформление, 2020

Содержание

Предисловие	7
Foreword	9
Введение	11
Список сокращений	13
Глава 1. Анатомия и физиология репродуктивной системы у мужчин	17
1.1. Анатомия	17
1.2. Секреция андрогенов и ее регуляция	21
1.3. Метаболизм тестостерона в организме	26
1.4. Эффекты тестостерона	31
Глава 2. Возрастные изменения эндокринной системы у мужчин	36
2.1. Общие изменения эндокринной системы при старении	37
2.2. Возрастные изменения в тестикулах	40
2.3. Возрастные изменения гипоталамо-гипофизарной системы	42
Глава 3. Современное состояние проблемы	
возрастного андрогенного дефицита	47
3.1. Определение и терминология	47

3.2. Распространенность возрастного андрогенного дефицита	49
3.3. Сроки наступления возрастного андрогенного дефицита	51
3.4. Роль глобулина, связывающего половые стероиды,	
в патогенезе возрастного андрогенного дефицита	54
3.5. Патогенез возрастного андрогенного дефицита	57
Глава 4. Физиологические аспекты влияния	
андрогенов на органы и системы	61
4.1. Влияние андрогенов на предстательную железу	61
4.2. Влияние андрогенов на сердечно-сосудистую систему	
(соавт.: В.В. Вадов, Л.О. Ворслов)	68
4.3. Влияние андрогенов на углеводный обмен и инсулинорезистентность	80
4.4. Влияние андрогенов на половую функцию и сексуальное поведение	
(соавт.: А. Гомула)	94
4.5. Влияние андрогенов на состояние костной ткани	
(соавт.: Г.М. Мсхалая)	96
4.6. Влияние андрогенов на строение тела	108
4.7. Влияние андрогенов на когнитивную функцию и настроение	111
4.8. Влияние андрогенов на иммунную систему	111
Глава 5. Клиника андрогенной недостаточности	112
5.1. Клинические симптомы возрастного андрогенного дефицита	112
5.2. Ожирение и возрастной андрогенный дефицит	117
5.3. Возрастной андрогенный дефицит и половая функция	
(диагностика, дифференциальная диагностика,	
возможности комбинированной терапии)	123
Глава 6. Диагностика возрастного андрогенного дефицита	129
6.1. Лабораторная диагностика	131
6.2. Гормональный скрининг	139
6.3. Лифференциальная лиагностика	141

Содержание 5

6.4. Клиниче	ская значимость определения	
надпоче	чниковых андрогенов и дигидротестерона	
в диагно	стике возрастного андрогенного дефицита	143
Глава 7. Лечені	ие возрастного андрогенного дефицита	145
7.1. Лечение	возрастного андрогенного дефицита	145
7.2. Цели зам	местительной гормональной терапии	149
7.3. Подходь	ык терапии возрастного андрогенного дефицита	150
7.4. История	применения андрогенов у мужчин	152
7.5. Выбор п	репарата	156
7.6. Монитор	ринг проводимого лечения	179
7.7. Комбині	ированная терапия эректильной дисфункции	
при возр	растном андрогенном дефиците	180
Заключение		190
Список литерат	уры	192
приложения		
Приложение 1.	Обследование мужчин	
	(соавт.: Ю.А. Тишова, Л.О. Ворслов)	212
Приложение 2.	Гормональное обследование	236
Приложение 3.	Оценка половой и репродуктивной функции	253
Приложение 4.	Оценка мочеиспускания	256
Приложение 5.	Номограмма Вермюлена для расчета уровня свободного тестостерона сыворотки	268

6 Содержание

Приложение 6.	Шкала депрессии Бека (BDI)	269
Приложение 7.	Гормональные андрогенные препараты	273
Приложение 8.	Препараты хорионического гонадотропина	275
Приложение 9.	Определение стероидов в слюне	276
Приложение 10	. Рекомендации по диагностике, лечению и мониторированию гипогонадизма у мужчин (соавт.: Б. Люненфельд, Г.Ж. Мсхалая, М. Цицман, С. Арвер, Ю.А. Тишова, А. Моргенталер)	309
Приложение 11	. Полезная информация	335

Глава 1

Анатомия и физиология репродуктивной системы у мужчин

1.1. Анатомия

Тестикулы (яички) — орган мужской репродуктивной системы. Тестикулы здорового мужчины представляют собой парные овоидные образования, несколько сплющенные по медиальной поверхности, имеющие размеры $4 \div 4,5 \times 2,5 \div 3,5$ см и массу 20-30 г. Яичко окружено 7 оболочками: кожа мошонки, мясистая оболочка ($tunica\ dartos$), наружная семенная фасция ($fascia\ spermatica$), фасция мышцы, поднимающей яичко, мышца, поднимающая яичко ($m.\ cremaster$), внутренняя семенная фасция ($fascia\ spermatica\ int.$), влагалищная оболочка яичка ($tunica\ vaginalis\ testis$) ($cm.\ puc.\ 1.1$).

Паренхима яичка окружена неэластической, напоминающей матовое стекло, белочной оболочкой (tunica albuginea). Тесно сращенной с ней является собственная влагалищная оболочка (tunica vaginalia propria, tunica vaginalis testis), окружающая также и придаток яичка. Вместе со своим париетальным листком оболочка образует полость, содержащую небольшое количество жидкости. В этой полости при патологических условиях могут образовываться скопления жидкости (гидро-, гематоцеле). Далее, кнаружи следует общая влагалищная оболочка, которую также называют наружной семенной фасцией (fascia spermatica), связанная с состоящим из поперечнополосатых мышечных волокон слоем m. cremaster. Наконец, fascia cremasterica образует состоящую из гладкомышечных клеток, важную с точки зрения терморегуляции, оболочку tunica dartos, которая совместно с подкожной соединительной тканью и кожным слоем образует мошонку — наружную полость яичка.

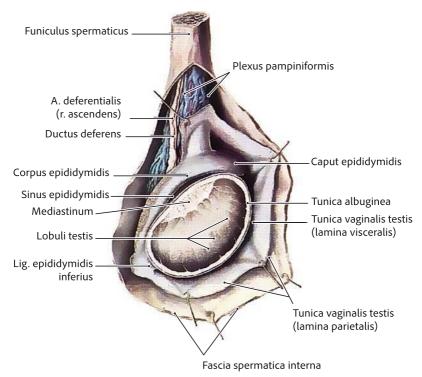
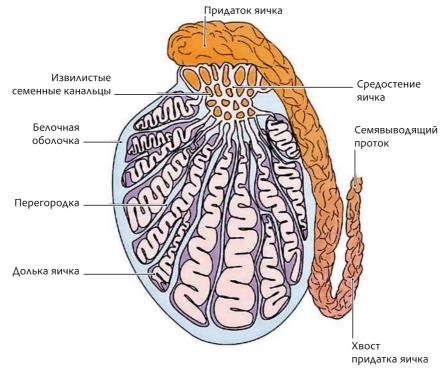


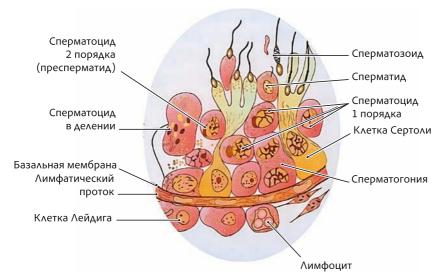
Рис. 1.1. Яичко и его оболочки [Синельников Р.Д., 1979]

В яичке насчитывается 250–300 долек, в каждой из которых находится 2–4 извитых семенных канальца (tubule seminiferi). В средостении они переходят в более тонкие прямые семенные канальцы (tubule seminiferi recti), скопление которых образует галлерову сеть яичка (rete testis Halleri). В средостении яичка из сети его канальцев формируются 12–18 тонких коротких выносящих канальцев (ductuli efferentis), которые входят в головку придатка (epididymis) (рис. 1.2).

Основной структурно-функциональной единицей яичка является извитой семенной каналец. Он имеет диаметр 0,2–0,3 мм, и при длине дольки 2–3 см длина канальца составляет не меньше 30–35 мм. Стенка его состоит из собственной соединительнотканной оболочки (tunica propria), в которой выделяется внутренняя базальная мембрана (membrana basalis) с расположенными на ней клетками герминативного эпителия, между которыми протягиваются от основания до просвета канальцев пирамидальные клетки Сертоли. Специфической особенностью последних является их циклическая изменчивость, связанная с динамикой сперматогенеза. Клетки Сертоли выполняют

1.1. Анатомия **19**




Рис. 1.2. Строение яичка [Jockenhovel F., 2004]

несколько функций: фагоцитарную, барьерную, транспортную и эндокринную (синтез и секреция андрогенсвязывающего белка и ингибина).

В соединительной ткани, разделяющей извитые семенные канальцы, вкраплены группами полигональные клетки Лейдига, всю совокупность которых иногда обозначают термином «интерстициальная железа», связывая с этой последней внутрисекреторную активность яичка — образование тестостерона. Клетки Лейдига обладают ультраструктурой и ферментами, характерными для стероидпродуцирующих клеток.

От семенных канальцев клетки Лейдига отделены лимфатическим пространством (cm . рис. 1.3).

Процессы как сперматогенеза, так и секреции гормонов тестикулами регулируются гормональными факторами, из них основное значение имеют гонадотропные гормоны, тестостерон и эстрадиол (гормональная регуляция). Определенное влияние на функцию яичек оказывают и локальные механизмы регуляции (паракринные и аутокринные факторы).

Рис. 1.3. Схематичное изображение строения семенного канальца [*Jockenhovel F.*, 2004]

Возможно, через лимфу идет основной обмен продуктами секрета клеток Лейдига и клеток Сертоли. Этот путь является также основным для проникновения тестостерона из клеток Лейдига внутрь семенных канальцев. Близкое расположение клеток Лейдига к капиллярам способствует секреции андрогенов в кровяное русло.

Физиология яичек

Яички выполняют две важные функции: синтез и секреция мужских половых гормонов (стероидогенез) и образование и созревание мужских половых клеток или сперматозоидов (сперматогенез). Сперматогенез и стероидогенез происходят в двух различных в морфологическом и функциональном отношении структурных единицах — яичках, которые, тем не менее, тесно связаны между собой. Нормальный сперматогенез возможен только при слаженной работе обеих структурных единиц. В функциональном отношении выделяют канальцевую часть, состоящую из семявыносящих канальцев, которая занимает большую часть объема яичка (60–80%), и интерстициальную часть, занимающую небольшой объем и расположенную между семявыносящими протоками. 10–20% интерстициальной части составляют клетки Лейдига — продуцирующие и секретирующие тестостерон, наиболее важный мужской половой гормон. Учитывая небольшой объем, приходящийся на стероидсекретирующие клетки, снижение их функции, приводящее к возрастному

андрогенныму дефициту, не сопровождается значительной гипоплазией тестикул.

Учитывая структурную независимость процессов стероидогенеза и сперматогенеза, возможны нарушения одной из функций при относительной сохранности другой. Так, при наличии у мужчины сертоклеточного синдрома, при котором в канальцевой части яичка присутствуют клетки Сертоли, но отсутствуют клетки сперматогенного эпителия, функция стероидогенеза не страдает и единственным поводом для обращения к врачу является бесплодие, которое в таких случаях неизлечимо. Обратная ситуация возникает при синдроме фертильного евнуха, при котором отсутствует секреция тестостерона в клетках Лейдига, но канальцевая часть функционально и структурно интактна. Поэтому при введении андрогенов таким пациентам у них восстанавливается сперматогенез.

1.2. Секреция андрогенов и ее регуляция

Андрогены — мужские половые гормоны — соединения, стимулирующие рост, развитие и функционирование мужской репродуктивной системы. Важно подчеркнуть, что это биологическое, а не химическое определение. Что касается химического строения, то андрогены представляют собой стероидные гормоны. Секретируемые в организме мужчины андрогены подразделяются по своему происхождению на надпочечниковые и тестикулярные. К надпочечниковым андрогенам относят дегидроэпиандростерон (ДГЭА), дегидроэпиандростеронсульфат (ДГЭА-С) и андростендион. Секреция тестостерона происходит в яичках. Надпочечниковые андрогены в периферических тканях способны превращаться в тестостерон. Их вклад в общий андрогеновый пул взрослого мужчины незначителен по сравнению с андрогенными эффектами тестостерона. Многие исследователи считают, что надпочечниковая секреция андрогенов для мужчин не имеет большого физиологического значения [Маршалл В.Д., 2000]. Тем не менее с возрастом происходит снижение секреции как надпочечниковых, так и тестикулярных андрогенов, причем снижение секреции надпочечниковых андрогенов начинается раньше. В настоящее время имеется много сторонников проведения заместительной терапии ДГЭА с целью уменьшения симптомов старения [Гончаров Н.П., Кация Г.В., Нижник А.Н., 2004].

Секреция надпочечниковых андрогенов впервые усиливается в 7–8 лет и продолжает увеличиваться до середины пубертатного периода. Ранее считалось, что продукцию надпочечниковых андрогенов стимулирует только АКТГ, но в последнее время появились предположения о существовании самостоятельного пептидного гормона, который условно называют «гормон,

стимулирующий секрецию надпочечниковых андрогенов». Мы считаем, что нельзя исключить влияния гонадотропинов на секрецию надпочечниковых андрогенов, что клинически подтверждается отсутствием подмышечного оволосения у пациентов с гипогонадотропным гипогонадизмом.

Tip a series / /		
Тестикулы (95–98 <i>%</i>)	Надпочечники (3–5%)	
Дегидроэпиандростерон	Дегидроэпиандростерон	
Тестостерон	Дегидроэпиандростерона сульфат	
Андростерон	Андростендион	

Таблица 1.1. Источники андрогенов у мужчин

1.2.1. Синтез тестостерона в яичках и его регуляция

Тестикулы взрослого мужчины продуцируют тестостерон (от 5 до 12 мг/сут), а также слабые андрогены — ДГЭА, андростендион. В тестикулах образуется и незначительное количество ДГТ и небольшое количество эстрогенов. Хотя основным источником тестикулярного Т являются клетки Лейдига, однако ферменты стероидогенеза присутствуют и в других клетках яичка (канальцевый эпителий). Эти ферменты могут принимать участие в повышении местного уровня T, что необходимо для нормального сперматогенеза.

Тестостерон синтезируется из холестерина путем последовательных ферментативных реакций в клетках Лейдига. Схема синтеза тестостерона приведена на рис. 1.4.

Тестостерон является основным продуктом секреции яичек. Холестерин может синтезироваться из ацетата или извлекаться из ЛПНП крови. У человека биосинтез идет в основном по дельта-5-пути, включающему прегненолон, 17-гидроксипрегненолон и андростендиол. Тестостерон и андростендион секретируются в кровь и на периферии во внежелезистых тканях превращаются соответственно в эстрон и эстрадиол.

Как и в других органах эндокринной системы, имеет место наличие тонической обратной связи, секреция тестостерона находится под контролем гипоталамо-гипофизарной системы (*см.* рис. 1.5).

Гонадотропин-рилизинг гормон (ГнРГ, люлиберин), секретируемый ней-росекреторными клетками гипоталамуса через портальные сосуды гипофиза контролирует импульсную секрецию гонадотропинов (ГТ) передней доли гипофиза.

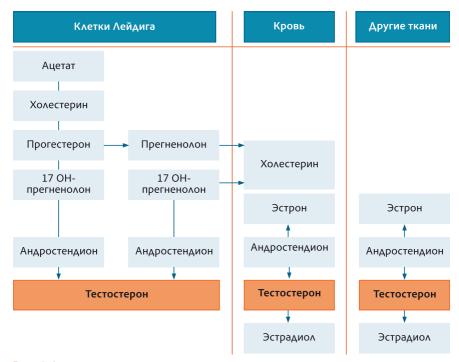


Рис. 1.4. Биосинтез стероидов в яичке

Гонадотропины — **лютеинизирующий** ($\Pi\Gamma$) и фолликулостимулирующий ($\Phi\Gamma\Gamma$) гормоны, в свою очередь, являются стимуляторами эндокринной и сперматогенной функций яичка. $\Pi\Gamma$ регулирует продукцию и секрецию тестостерона в клетках Лейдига, а $\Phi\Gamma\Gamma$ индуцирует процессы сперматогенеза.

Люлиберин представляет собой декапептид, а ЛГ и Φ СГ — гликопротеины, которые весьма близки между собой по составу и физико-химическим свойствам.

В связи с тем, что у мужчин рецепторы ЛГ находятся на клетках Лейдига, его иногда называют «гормон, стимулирующий интерстициальные клетки» — ГСИК. ЛГ стимулирует синтез и секрецию половых стероидов клетками Лейдига, а также дифференцировку и созревание этих клеток. ФСГ способствует созреванию сперматогенного эпителия и, по всей вероятности, усиливает реактивность клеток Лейдига по отношению к ЛГ, индуцируя появление ЛГ-рецепторов на клеточных мембранах. ЛГ и ФСГ, взаимодействуя со специфическими рецепторами на мембранах клеток Лейдига и Сертоли, активируют аденилатциклазу, что ведет к повышению содержания в них цАМФ, который активирует фосфорилирование различных клеточных белков.

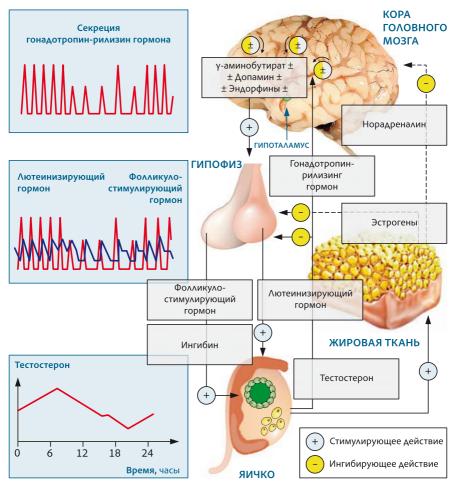


Рис. 1.5. Схема регуляции стероидогенеза в яичках [Jockenhovel F., 2004]

Интенсивность образования ГТ в гипофизе, в свою очередь, зависит от функционального состояния гонад (от уровня секреции андрогенов и ингибина), поскольку в регуляции тестикулярных функций важнейшее значение имеют и обратные связи, замыкающиеся на различных уровнях. Так, наблюдается четкая обратная связь уровней ЛГ и Т: тестостерон ингибирует секрецию ЛГ. По-видимому, эта обратная связь опосредуется лишь свободным T, а не связанным с ГСПС. Механизм ингибирующего влияния T на секрецию ЛГ сложен. Существует предположение, что в реализации его участвует не сам T, а другие стероиды, в которые он трансформируется. В этом процессе может

принимать участие и внутриклеточное превращение T в дигидротестостерон (ДГТ) либо в эстрадиол (E_2). Известно, что экзогенный E_2 подавляет секрецию ЛГ в гораздо меньших дозах, нежели T или ДГТ. Ингибирующее влияние эстрогенов на секрецию ЛГ играет важную роль в снижении секреции тестостерона при ожирении, когда за счет повышения активности ароматазы в жировой ткани возрастает содержание эстрогенов. Однако, поскольку экзогенный ДГТ также обладает ингибирующим действием и при этом сам не подвергается ароматизации, ароматизация, очевидно, не является необходимым процессом для проявления ингибирующего эффекта андрогенов на секрецию ЛГ. Более того, сам характер изменения импульсной секреции ЛГ под действием E_2 , с одной стороны, и T и ДГТ — C другой, различен, что может указывать на разницу в механизме действия этих стероидов.

Отмечено, что большие дозы T способны ингибировать и Φ C Γ , хотя физиологические концентрации T и ДГT таким эффектом не обладают. Эстрогены подавляют секрецию Φ C Γ даже более интенсивно, чем секрецию JГ Γ .

Обратная связь между тестикулами и центрами регуляции их функций замыкается и на уровне гипоталамуса, в ткани которого найдены рецепторы T, ДГТ и E_2 , а также имеются и ферменты превращения T в ДГТ (5α -редуктаза) и E_2 (ароматаза).

Имеются данные об участии моноаминергических систем и простагландинов серии E в регуляции секреции люлиберина.

Процесс старения сопровождается сглаживанием ритма секреции тестостерона с уменьшением пиков секреции, а также нарушением суточного ритма, что является отражением возрастных изменений секреции ГТ [Bremner W.J., 1983; Desylpere J.P., Vermulen A., 1989].

Для поддержания максимальной стероидогенной активности клеток Лейдига в присутствии ЛГ необходим пролактин (ПРЛ), увеличивающий число рецепторов к ЛГ. Однако повышенный уровень ПРЛ оказывает отрицательное влияние на секреторную функцию клеток Лейдига. Отмечено тормозящее действие гиперпролактинемии и на секрецию гонадотропинов. Эффекты ПРЛ в тестикулах менее изучены. Его высокие концентрации замедляют спермато- и стероидогенез, хотя не исключено, что в нормальных количествах этот гормон необходим для сперматогенеза.

Поскольку секреция ГТ носит импульсный характер с наибольшим пиком секреции в утренние часы, то и секреция тестостерона также имеет циркадный ритм, с повышением секреции в 6:00-8:00 и понижением в вечерние часы (20:00-22:00). Биологическое значение существования циркадного ритма секреции тестостерона в настоящее время окончательно не установлено (*см.* рис. 1.6).

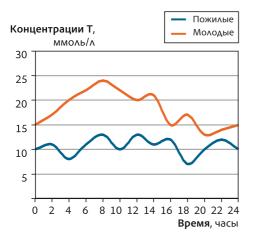


Рис. 1.6. Суточный профиль секреции общего тестостерона у здоровых молодых и пожилых мужчин [Bremner W.J., 1983]

1.3. Метаболизм тестостерона в организме

Основная часть тестостерона (около 57%), поступающего в кровь, связывается со специфическим транспортным белком — тестостеронэстрадиолсвязывающим глобулином (глобулин, связывающий половые гормоны, ГСПГ; секс-стероид связывающий глобулин СССГ или глобулин, связывающий половые стероиды, ГСПС). ГСПС связывает в плазме как тестостерон, так и эстрадиол, но имеет большее сродство к тестостерону.

На долю биологически активного тестостерона приходится около 43% общего тестостерона (1–3 % составляет свободный тестостерон, 40 % — тестостерон, связанный с альбумином). Эстрогены, а также такие состояния, как гипертиреоз и цирроз печени, повышают концентрацию в плазме ГСПС. Андрогены, глюкокортикоиды и состояния, связанные с потерей белка, гипотиреоз и ожирение понижают концентрацию в плазме ГСПС. Если концентрация ГСПС снижается, отношение свободного тестостерона к свободному Е2 увеличивается, хотя при этом имеет место абсолютное повышение концентрации обоих гормонов. Если концентрация ГСПС увеличивается, отношение свободного тестостерона к свободному Е2 уменьшается. Таким образом, результатом увеличения содержания ГСПС является усиление эффектов эстрогенов. С возрастом происходит повышение секреции ГСПС, что может приводить у мужчин, с одной стороны, к усилению эффектов эстрогенов, что в клинической картине проявляется гинекомастией, перераспределением жировой ткани по женскому типу, а с другой стороны, к поддержанию уровня общего тестостерона в пределах нормальных показателей, при снижении свободного

тестостерона. Следовательно, для оценки содержания свободного тестостерона необходимо определение ГСПС. Факторы, влияющие на содержание ГСПС, представлены в табл. 1.2.

Таблица 1.2. Факторы, влияющие на концентрацию в плазме крови глобулина, связывающего половые стероиды [*Маршалл В.Дж.*, 2000]

Факторы, повышающие концентрацию ГСПС	Факторы, понижающие концентрацию ГСПС
Эстрогены	Андрогены
Гипертиреоз	Гипотиреоз
Цирроз печени	Глюкокортикоиды
Гепатиты	Недостаточное питание
Возраст	Мальабсорбция
	Состояния, связанные с потерей белка
	Ожирение
	Инсулин
	Пролактин
	Гормон роста
	Нефротический синдром

Альбумин связывает андрогены слабее, чем эстрогены. У здорового человека в свободном состоянии находится примерно 2% тестостерона. Считается, что биологической активностью обладает только свободный гормон, способный проникать в интерстициальную и внутриклеточную среду. Связь тестостерона с альбумином достаточно слабая, в связи с чем тестостерон из этой связи может высвобождаться, поэтому биологически активным считают свободный тестостерон и тестостерон, связанный с альбумином.

Можно выделить 3 основных пути метаболизма тестостерона в организме (cm . рис. 1.7):

1. Усиление биологической активности — превращение тестостерона в более активный метаболит — ДГТ под действием 5α-редуктазы (в органах репродуктивной системы — предстательная железа, придаток яичка, семенные пузырьки, кожа).

ГИДРОКСИЛИРОВАНИЕ

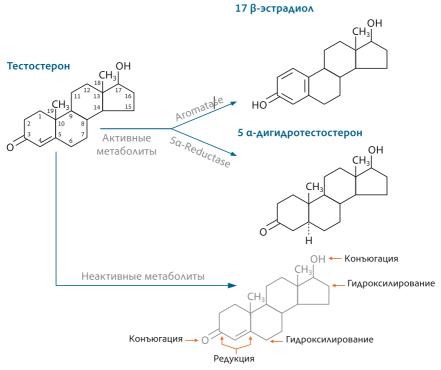
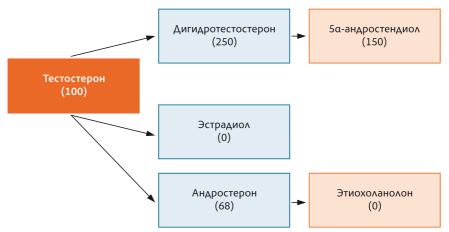



Рис. 1.7. Метаболические превращения тестостерона в активные и неактивные метаболиты

- 2. Изменение биологической активности превращение тестостерона под действием ароматазы в эстрадиол (молочная железа, головной мозг, мышечная ткань, жировая ткань).
- 3. Ослабление биологической активности под действием 5 β -редуктазы превращение тестостерона в 5 β -дигидротестостерон и этиохоланолон, а также образование неактивных сульфатов и глюкоронидов в печени.

Изменение активности тестостерона в результате метаболических превращений представлено на рис. 1.8.

Продолжительность циркуляции половых гормонов в крови невелика и носит двухфазный характер. Период полувыведения на первом этапе составляет 5–20 мин, а затем замедляется до 2,5–3 ч. Значительное снижение их концентрации в крови происходит за счет поглощения тканями, где происходит их интенсивный метаболизм. Большое количество гормонов диффундирует из крови в жировую ткань, которая служит своего рода депо для половых гормонов.

Рис. 1.8. Изменение активности тестостерона в результате метаболических превращений

В скобках указана андрогенная активность каждого из стероидов; активность тестостерона принята за 100

Метаболическим превращениям подвергается как свободный, так и связанный с альбумином (но не с ГСПС) тестостерон. Около половины продуцируемого тестостерона выводится из организма с мочой в виде андростерона, этиохоланолона и (в гораздо меньшей степени) эпиандростерона. Уровень всех этих 17-кетостероидов (17-КС) в моче не позволяет судить о продукции тестостерона, поскольку аналогичным метаболическим превращениям подвергаются и слабые андрогены надпочечников. Следовательно, определение 17-КС нельзя использовать для оценки содержания тестостерона. Другими экскретируемыми метаболитами тестостерона являются его глюкуронид, уровень которого в моче здорового человека хорошо коррелирует с продукцией тестостерона. Метаболизм тестостерона во многом зависит от функции печени, поскольку основные метаболические превращения происходят в гепатоцитах. При нарушении функции печени андрогенные препараты, производные тестостерона, не подвергаются полному превращению в неактивные соединения, а преобразуются в эстрогены. Поскольку эндогенный тестостерон также подвергается превращению в эстрогены, при любых состояниях, сопровождающихся функциональной печеночной недостаточностью, возможно появление гинекомастии.

В большинстве андрогенчувствительных тканей тестостерон под действием 5α -редуктазы превращается в восстановленную форму — ДГТ, который является наиболее активным андрогеном и обеспечивает биологическую активность тестостерона.

Молекулярные механизмы действия тестостерона

В большинстве тканей тестостерон является прогормоном и метаболизируется в ДГТ. Трансформация тестостерона в дигидротестостерон протекает в цитоплазме и клеточном ядре под действием фермента 5α-редуктазы. Трансформация в ядре характерна для типичных тканеймишеней тестостерона. Механизм действия тестостерона и его активных метаболитов заключается в ассоциации с цитозольным рецептором, транспортирующим гормон к клеточному ядру. В ядре тестостерон выступает в качестве дерепрессора генетической информации, вызывая синтез новых РНК и белка.

Эффект наступает прежде всего на уровне транскрипции: тестостерон стимулирует образование мРНК и рРНК, а также активность РНК-полимераз. Составной частью стимуляции белкового синтеза является не только увеличение образования структурных белков, но и активация ферментов цикла Кребса, дыхательной цепи, β -глюкоронидазы и аргининазы.

Тестостерон и дигидротестостерон связываются с одним и тем же рецептором — андрогенным рецептором (AP), но аффинность тестостерона существенно меньше, чем у дигидротестостерона. Ген рецептора андрогенов расположен на X-хромосоме (Xq11–12).

Дефекты гена AP ведут к широкому спектру нарушений. Наиболее тяжелые ведут к развитию ложного мужского гермафродитизма, проявляющегося наличием женских наружных гениталий и отсутствием мужских вторичных половых признаков (синдром нечувствительности к андрогенам — синдром тестикулярной феминизации). «Мягкие» формы могут проявляться лишь слабой вирилизацией и бесплодием.

Андрогеновый рецептор принадлежит к семейству рецепторов стероидных гормонов. Эти рецепторы действуют типичным образом: они связываются со специфическими последовательностями геномной ДНК и стимулируют синтез РНК. К данному семейству принадлежат также рецепторы минералокортикоидов, глюкокортикоидов, тиреоидных гормонов, ретинола, эстрогенов и прогестерона.

Все рецепторы стероидных гормонов состоят из 3 участков: N-концевого, ДНК-связывающего и гормон-связывающего участка.

В последнее время перспективным является изучение N-концевого участка андрогенового рецептора, поскольку появились данные о его полиморфизме у здоровых людей, который может объяснять не только различную чувствительность к андрогенам, проявляющуюся разной степенью вирилизации при одинаковом содержании тестостерона в крови, но и также предрасположенность к возникновению рака предстательной железы.

N-концевой участок андрогенового рецептора состоит из глутаминовых повторов, кодируемых повторами CAG. У человека в среднем присутствуют 17–19 таких повторов. Предполагается, что увеличение длины таких

повторов ослабляет взаимодействие рецептора с андрогенами, а уменьшение — усиливает. Мутации N-концевого участка, ослабляющие активность рецептора, могут приводить к идиопатическому бесплодию у мужчин. Мутации андрогенного рецептора выявлены также в первичных очагах и метастазах рака предстательной железы [McLean et al., 1995; Tilley et al., 1996]. Интересен факт, что у мужчин с относительно малым и среднем числом этих триплетов CAG (15–20) возрастное снижение уровня тестостерона в сыворотке происходит быстрее, чем при большем их числе (25–30) [Krithivas et al., 1999].

1.4. Эффекты тестостерона

Тестостерон — основной мужской половой гормон, играющий жизненно важную роль в поддержании многих функций мужского организма, поскольку оказывает биологическое действие практически на все его ткани. Неслучайно именно тестостерон был назван «гормон королей — король гормонов» [Carruthers M., 1996].

Можно выделить следующие основные классические эффекты тестостерона:

- 1. **АНДРОГЕННЫЕ** рост и развитие половых органов, проявление вторичных половых признаков (рост волос на лице, туловище, конечностях, а также образование залысин и лысины), эректильная функция.
- 2. АНАБОЛИЧЕСКИЕ поддержание мышечной массы (в том числе в миокардиоцитах), стимуляция синтеза органоспецифических белков в почках, печени, сальных и потовых железах, поддержание плотности костной ткани.
- 3. АНТИГОНАДОТРОПНЫЙ подавление секреции гонадотропинов.
- 4. РЕПРОДУКТИВНЫЙ поддержание сперматогенеза.
- **5.** ПСИХОФИЗИОЛОГИЧЕСКИЙ либидо, формирование стереотипа полового поведения (агрессивное, воинственное поведение), настроение, психостимулирующий эффект.
- **6. ГЕМОПОЭЗ** стимуляция выработки эритропоэтина в почках, стимуляция эритропоэза в красном костном мозге.

Физиологические эффекты тестостерона — это результат сочетанного действия самого тестостерона и его андрогенных и эстрогенных метаболитов. Таким образом, тестостерон оказывает как **прямое действие** на органы мишени, так и **опосредованное действие** через активные метаболиты, которыми являются $Д\Gamma$ Т и эстрогены (*см.* табл. 1.3).

Таблица 1.3. Основные эффекты тестостерона, эстрадиола и дигидротестостерона в организме взрослого мужчины

Эффекты тестостерона	Эффекты эстрадиола	Эффекты дигидротестостерона	
Либидо	Половое поведение	Гипертрофия простаты	
Регуляция секреции ЛГ, ФСГ	Регуляция секреции ЛГ, ФСГ	Акне	
Действие на липиды крови	Действие на липиды крови	Алопеция	
Рост волос на лице, туловище, конечностях	Рост волос на голове	Влияние на ЦНС: настроение, память, внимание	
Поддержание плотности костной ткани	Поддержание плотности костной ткани		
Сперматогенез			
Рост, развитие и поддержание мышечной ткани, почек, печени, костей			
Эректильная функция			
Стимуляция гемопоэза			
Влияние на ЦНС: настроение, память, внимание			

Тестостерон абсолютно необходим для развития и поддержания мужского фенотипа, т. е. для развития и поддержания вторичных половых призна-ков. Тестостерон и ДГТ необходимы для нормального развития наружных половых органов, увеличение которых коррелирует с повышением содержания тестостерона в период полового развития. Характер оволосения, в том числе и лобкового, также определяется действием тестостерона и имеет половые различия у мужчин и женщин (у мужчин рост волос на лобке имеет ромбовидную форму, с распространением волос к пупку, у женщин — рост

волос имеет горизонтальную линию). Андрогены играют важную роль в сперматогенезе и продукции эякулята. При снижении содержания андрогенов уменьшается, иногда вплоть до полного исчезновения, количество эякулята.

Тестостерон — основной андроген, представленный в **мышечной ткани**, в которой активность 5α-редуктазы крайне низка. Тестостерон оказывает прямое анаболическое действие как на гладкую, так и на скелетную мускулатуру, приводя к увеличению мышечной массы и гипертрофии мышечных волокон. Количество мышечных волокон, однако, не изменяется. Снижение тестостерона неизбежно ведет к мышечной гипотрофии. Тестостерон также оказывает анаболическое действие на сердце, приводя к увеличению синтеза мРНК.

Андрогены оказывают выраженное влияние на жировую ткань (рис. 1.9). Мужчины и женщины различаются по характеру распределения и отложения жировой ткани в организме. У женщин до менопаузы бо́льшая часть жировой ткани откладывается в периферических жировых депо, таких как грудь, бедра и ягодицы. У мужчин же, в отличие от женщин, отложение жировой ткани носит центральный характер, наибольшее накопление происходит в области живота, преимущественно внутриабдоминально (висцерально).

До периода полового созревания мальчики и девочки не имеют существенных различий в количестве и характере отложения жировой ткани, хотя нередко у девочек отмечают большее ее количество. Начиная с пубертатного периода различия становятся очевидными. У девочек продукция эстрогенов и прогестерона индуцирует увеличение общего количества жировой ткани и ее преимущественное отложение в области груди и нижней части туловища. У мальчиков происходит уменьшение общего количества подкожно-жировой клетчатки, однако жировая ткань аккумулируется в области живота, что на данной стадии может быть незаметно визуально, но отчетливо видно при проведении МРТ [Roemmich, 1998].

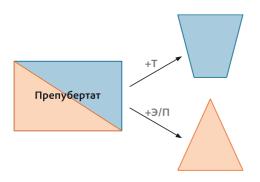


Рис. 1.9. Влияние половых гормонов на характер распределения жировой ткани:

T — тестостерон, Э — эстрадиол, П — прогестерон

У мужчин и женщин различия существуют не только в характере распределения жировой ткани, но и ее метаболизме. Тестостерон стимулирует β-адренорецепторы, в то время как эстрогены/прогестерон — преимущественно α-адренорецепторы. Вероятно, разный характер отложения и метаболизма жировой ткани у мужчин и женщин обусловлен различными ролями мужчин и женщин в репродукции. Висцеральная жировая ткань обладает большей метаболической активностью, направленной на синтез триглицеридов, а также высвобождение большого количества свободных жирных кислот. Через портальную вену свободные жирные кислоты, высвобождаемые из висцерального жирового депо, попадают в печень. Таким образом, запасы жировой ткани у мужчин быстро мобилизируются для обеспечения организма энергией. Запасы жировой ткани у женщин в намного меньшей степени являются источником быстрого высвобождения энергии.

Как эстрогены, так и андрогены необходимы для нормальной минерализации костной ткани и поддержания ее плотности. Дефицит половых гормонов ведет к остеопорозу. В начале полового созревания линейный рост коррелирует с увеличением содержания тестостерона. Завершение полового развития также зависит от тестостерона, обеспечивающего «закрытие» зон роста.

Влияние тестостерона на **ЦНС** опосредуется через эффекты E_2 или ДГТ. Тестостерон оказывает выраженное психотропное действие, которому, однако, в клинической практике уделяется незаслуженно мало внимания. Отмечается выраженная связь между содержанием тестостерона, с одной стороны, и настроением, работоспособностью, чувством самоудовлетворенности — с другой [Christiansen K.H., 1998]. Частота и наличие сексуальных фантазий, утренних эрекций, потребность в мастурбации или регулярности половых контактов строго коррелирует с содержанием тестостерона в крови. Андрогены играют важную роль в определении «мужского» поведения: агрессивности, уверенности, инициативности, аналитическом мышлении.

Функция печени также находится под влиянием половых гормонов. Половой диморфизм в синтезе белков и многих печеночных ферментов находит отражение в различии нормативных показателей для мужчин и женщин.

Андрогены оказывают двойное влияние на **гемопоэтическую систему.** Стимуляция продукции эритроцитов осуществляется эритропоэтином через андроген-зависимые рецепторы. С другой стороны, андрогены также оказывают прямое действие на стволовые клетки, увеличивая синтез гемоглобина. Большое внимание исследователи в настоящее время уделяют влиянию андрогенов на кровоток. Помимо влияния на гемопоэз, тестостерон

оказывает влияние на свертывающую систему. Снижение тестостерона ведет к повышению уровня активатора плазминогена типа 1, что, в свою очередь, снижает процессы фибринолиза.

Андрогены оказывают положительный эффект на стабилизацию протеиновых рецепторов, назначение андрогенов ингибирует разрушение рецептора.

В последнее время появляются работы, демонстрирующие предопределяющую роль тестостерона в социальной жизни мужчины. Мужчины, имеющие более высокий уровень тестостерона, не только более успешны в социальной жизни, но и нуждаются в более высоком его уровне для поддержания своей активности, в связи с чем появилось понятие «индивидуальной нормы тестостерона» [*Carruthers M.*, 2001].