

САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

СИСТЕМАТИЧЕСКАЯ КРИСТАЛЛО с. К. Филатов с. К. Филатов р. с. Бубнова Кривовичев К. Бубнова

УДК 548 ББК 24 Ф51

Авторы: д-р геол.-минерал. наук, проф. С. К. Филатов (С.-Петерб. гос. ун-т); д-р геол.-минерал. наук, проф., чл.-корр. РАН С. В. Кривовичев (С.-Петерб. гос. ун-т); д-р хим. наук, проф. Р. С. Бубнова (Институт химии силикатов РАН, С.-Петерб. гос. ун-т)

Рецензенты: д-р хим. наук, проф. *Н. В. Чежина* (Институт химии С.-Петерб. ун-та); д-р хим. наук, проф. *А. Е. Лапшин* (Институт химии силикатов РАН)

> Рекомендовано к печати учебно-методической комиссией по УГСН 05.00.00 Науки о Земле Санкт-Петербургского государственного университета

Филатов С.К., Кривовичев С.В., Бубнова Р.С.

Φ51

ун-та, 2019. — 231 с. ISBN 978-5-288-05958-2

Кристаллохимия как основа учения об атомно-молекулярном строении вещества и взаимосвязи кристаллической структуры и свойств химических соединений естественно разделяется на две части: установление и изучение общих принципов кристаллического строения вещества, с одной стороны, и описание кристаллических структур соединений разных классов — с другой. Первая часть изложена в опубликованном в 2018 г. учебнике «Общая кристаллохимия», второй части посвящается настоящее издание, в котором вначале даются структуры простых веществ (самородных элементов): неметаллов, металлов и близких к ним по составу и строению интерметаллидов, фаз внедрения и т. п., затем излагаются структуры галогенидов, оксидов и халькогенидов. Основной объем учебника отводится кислородным соединениям с кислотными радикалами типа TO₃ и TO₄ (CO₃, SiO₄, PO₄, SO₄ и др.), которые представляют более половины химических соединений, включаемых обычно в химические и физические справочники. Описываются также соединения с комплексами оксоцентрированных (в общем случае анионоцентрированных) тетраэдров.

Систематическая кристаллохимия: учебник. — СПб.: Изд-во С.-Петерб.

Учебник рекомендуется учащимся бакалавриата, магистратуры и аспирантуры, молодым ученым и преподавателям, специализирующимся в науках о Земле, химии, фундаментальном материаловедении, металлургии, физике, почвоведении, генетике и других естественных науках.

> УДК 548 ББК 24

Издано на средства Санкт-Петербургского государственного университета

© Санкт-Петербургский государственный университет, 2019

© С.К.Филатов, С.В.Кривовичев, Р.С.Бубнова, 2019

ISBN 978-5-288-05958-2

ОГЛАВЛЕНИЕ

Предисл	овие		7						
Введение	е. Сист	ема представления кристаллических структур	9						
ЧАСТЬ	1. СТР И РС	УКТУРЫ ПРОСТЫХ ВЕЩЕСТВ (САМОРОДНЫХ ЭЛЕМЕНТОВ) ЭДСТВЕННЫХ ИМ СОЕДИНЕНИЙ	13						
Глава 1.	Струк	туры простых веществ (самородных элементов)	13						
	1.1.	Разделение простых веществ на металлы и неметаллы	13						
	1.2.	Самородные элементы	14						
	1.3.	Молекулярные структуры простых веществ	15						
	1.4.	Атомные структуры простых веществ	20						
	1.5.	Структуры металлов и их твердых растворов	24						
	Рекомендуемая литература								
Глава 2.	Структуры соединений, родственных простым веществам								
	2.1.	Интерметаллиды	27						
	2.2.	Структуры металлических фаз внедрения	31						
	2.3.	Структуры соединений мелких атомов (В, С, Si, N) между собой	33						
	Реком	ендуемая литература	34						
ЧАСТЬ	2. CTP	УКТУРЫ ГАЛОГЕНИДОВ, ОКСИДОВ И ХАЛЬКОГЕНИДОВ	35						
Глава 3.	Крист	аллические структуры галогенидов	36						
	3.1.	Химическая связь в галогенидах	36						
	3.2.	Галогениды типа АВ	37						
	3.3.	Галогениды типа AB ₂	38						
	Реком	ендуемая литература	39						
Глава 4.	Струк	туры оксидов	40						
	4.1.	Структуры простых оксидов	40						
	4.2.	Структуры двойных оксидов	49						
	Реком	ендуемая литература	55						

Глава 5.	Структуры сульфидов и других халькогенидов 50									
	5.1. Химическая связь в сульфидах									
	5.2.	Сульфиды с донорно-акцепторной связью								
	5.3.	Сульфиды с донорно-акцепторной и ковалентной связью								
	5.4.	Сульфиды с донорно-акцепторной и металлической связью								
	5.5.	Сульфилы с ионно-ковалентно-металлической связью								
	5.6.	Молекулярные сульфилы								
	Darrah									
	FCKOM	сендуемая литература								
ЧАСТЬ	3. КРИ	СТАЛЛОХИМИЯ КИСЛОРОДНЫХ СОЕДИНЕНИЙ								
Глава 6.	Систе	матика и прочностные свойства кислородных соединений								
	6.1.	Химическая связь в солях кислородных кислот 62								
	6.2.	Постановка задачи								
	6.3.	Параметры систематики								
	6.4.	Общие черты полимеризации радикалов ТО ₃ и ТО ₄								
		в различных классах кислородных соединений								
	6.5.	Геометрия кристаллических структур								
		кислородных соединений как функция отношения О/Т								
	6.6.	Прочностные свойства кислородных соединений как функция								
		остаточного заряда тетраэдра TO ₄ / треугольника TO ₃								
	6.7.	Прочность кислородных соединений с высоковалентными,								
		средневалентными и низковалентными центральными атомами 72								
	Реком	граниченая литература 7								
	1 CROM	engyeman mileput ypu								
Глава 7.	Струк	ктуры карбонатов, нитратов и боратов с изолированными								
	треугольными радикалами									
	7.1.	Общие сведения								
	7.2.	Безводные карбонаты, нитраты и бораты кальцитового								
		и арагонитового строения								
	7.3.	Волные карбонаты								
	7.4.	Карбонаты — кристаллохимические геотермометры								
		и геобарометры								
	Рекоментуемая литература									
	- •1101.									
Глава 8.	Борат	ъ: уникальные черты кристаллохимии								
	8.1.	Место боратов в структурной химии								
		и структурной минералогии								
	8.2.	Координация атомов бора и кислорода в боратах								
	8.3.	Борокислородные группы								
	8.4.	Обозначения борокислородных жестких групп								
		и иных анионных комплексов								
	8.5.	Реберносвязные тетраэдры ВО ₄								
	8.6.	Статистика встречаемости борокислородных группировок								

	8.7.	Длины и углы связей в ВО ₃ - и ВО ₄ -полиэдрах							
	8.8.	Анализ длин связей мостиковых атомов кислорода в боратах							
	8.9.	Ангармонизм термических смещений катионов							
		и генерация второй гармоники							
	Реком	иендуемая литература							
Глава 9.	Бораты: кристаллические структуры и их <i>t-p-х</i> -преобразования								
	9.1.	Выборочное описание кристаллических структур боратов							
	9.2.	<i>t-p-х</i> -преобразования кристаллических структур боратов							
	Реком	мендуемая литература							
Глава 10). Крис	таллохимия силикатов и алюмосиликатов. Общие положения							
	10.1.	Значение силикатов в природе, промышленности и быту							
	10.2.	Кремнекислородные полиэдры и химическая связь в силикатах							
	10.3.	Кристаллохимические классификации силикатов							
	10.4.	Октаэдрические силикаты: систематика, примеры структур							
	10.5.	Основные черты кристаллохимии тетраэдрических силикатов							
	Реком	мендуемая литература							
Глава 11	. Стру	ктуры силикатов с конечными линейными							
	групі	лами тетраэдров							
	11.1.	Структуры ортосиликатов							
	11.2.	Структуры диортосиликатов							
	11.3.	Силикаты, содержащие группы SiO ₄ и Si ₂ O ₇ в одной структуре							
	Реком	иендуемая литература							
Глава 12	2. Коль	цевые силикаты							
	12.1	CTNUCTUREL REPUBLIC & DOUCTREALLEY ANY MULEDING							
	12.1.	Структуры осрилла и родственных ему минералов							
	12.2.	Силикаты с тройными и четверными кольцами							
	Реком	мендуемая литература							
Глара 12	IIono								
тлава 13	. цепо								
	13.1.	Разноооразие цепочек, кратных пироксеновой							
	13.2.	Структуры пироксенов (<i>Pyroxenes</i>)							
	13.3.	«ьрусковое» представление кристаллических структур,							
	12.4	основанных на пироксеновых цепочках							
	13.4.	Структуры амфиоолов (<i>Amphiboles</i>)							
	13.5.	многорядные ленты							
	13.6.	труочатые силикаты							
	Реком	мендуемая литература							

плава 14. Слоистые силикаты
14.1. Общие сведения 1
14.2. Систематика и структура слоистых силикатов и алюмосиликатов 1
14.3. Вычисление формул слоистых силикатов и алюмосиликатов 1
14.4. Политипия слюд 1
Рекомендуемая литература 1
Глава 15. Каркасные алюмосиликаты 1
15.1. Каркасные алюмосиликаты — соединения, производные
от кремнезема 1
15.2. Общие черты строения полевых шпатов 1
15.3. Метод экспериментального определения Al—Si-упорядочения 1
15.4. Al—Si-упорядочение в различных полевых шпатах 1
15.5. Расщепление позиций катионов 1
15.6. Моделирование термических преобразований полевых шпатов 1
15.7. Содалиты 1
15.8. Цеолиты 1
15.9. Терморентгенография гидросодалитов 1
15.10. Атомно-молекулярная картина ионного обмена по данным
рентгеноструктурного анализа 1
Рекомендуемая литература 1
ЧАСТЬ 4. КРИСТАЛЛОХИМИЯ — МЕЖДИСЦИПЛИНАРНАЯ НАУКА 1
Глава 16. Кристаллохимия минералов и неорганических соединений
с комплексами анионоцентрированных тетраэдров 1
16.1. Введение. Интеграция науки 1
16.2. Становление научного направления 1
16.3. Рождение альтернативной кристаллохимии на вулкане 1
16.4. Принципы строения эксгаляционных минералов-оксосолей
и вулканических газов. Естественная систематика оксосолей 1
16.5. Атомы, химическая связь и прочностные свойства оксосолей 1
16.6. Генезис минералов, содержащих тетраэдры OA ₄ 2
Рекомендуемая литература 2
Заключение
Литература 2
Предметный указатель
Сокращения

Часть 1 СТРУКТУРЫ ПРОСТЫХ ВЕЩЕСТВ (САМОРОДНЫХ ЭЛЕМЕНТОВ) И РОДСТВЕННЫХ ИМ СОЕДИНЕНИЙ

Глава 1. СТРУКТУРЫ ПРОСТЫХ ВЕЩЕСТВ (САМОРОДНЫХ ЭЛЕМЕНТОВ)

1.1. РАЗДЕЛЕНИЕ ПРОСТЫХ ВЕЩЕСТВ НА МЕТАЛЛЫ И НЕМЕТАЛЛЫ

Кристаллические структуры простых веществ можно разделить на молекулярные и атомные структуры неметаллов и структуры металлов. Распределение химических элементов по этим группам, согласно И. Нараи-Сабо [9], дано в табл. 1.1.

Металлические структуры								Атомные структуры		Молекулярные структуры							
																Н	He
Li	Be											В	С	Ν	0	F	Ne
Na	Mg											Al	Si	Р	S	Cl	Ar
Κ	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
Cs	Ba	La*	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Ро	At	Rn
Fr	Ra	Ac**															

Таблица 1.1. Химические элементы с металлическими, молекулярными и атомными структурами

* Лантаноиды: Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu ** Актиниды: Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lw Традиционно химические элементы делятся на *металлы* и *неметаллы* по их свойствам. Согласно Лоренцу, кристаллическая структура металла построена из жестких сфер (катионов металла), в промежутках между которыми распределены обобществленные электроны. Благодаря этому металлы и проявляют электропроводность, высокую теплопроводность, блеск, ковкость и другие характерные для металлов свойства.

Следует отметить неоднозначность разделения химических элементов на металлы и неметаллы. В молекулярных структурах селена и теллура молекулами являются не конечные группы атомов, а бесконечные цепи; а в структурах As, Sb и Bi в роли молекул выступают бесконечные слои. Аналогично графит, отнесенный к атомным структурам, может рассматриваться также как молекулярный кристалл, сложенный бесконечными слоями-молекулами. И даже такое атомное соединение, как алмаз, при желании можно отнести к молекулярным структурам с единственной молекулой, «бесконечной» (в атомных масштабах) в трех измерениях. Структуры благородных газов состоят из изолированных атомов, но место этих структур скорее среди молекулярных кристаллов, поскольку между атомами действуют остаточные связи.

Неоднозначность возрастает вследствие существования многих простых веществ в виде различных кристаллических модификаций. Например, одной из находок последних лет является обнаружение фуллеренов — полиморфных модификаций углерода. Фуллерены построены из молекул состава С₆₀, С₇₀ и др., напоминающих футбольный мяч с олимпийской символикой (обладающих осями симметрии пятого и шестого порядков), вследствие чего такие структуры никак нельзя назвать атомными.

Г.Б.Бокий разделил химические элементы на металлы и неметаллы по кристаллохимическому признаку — в соответствии с координационными числами атомов в простом веществе: неметаллы проявляют *к. ч.* не выше 4, металлы — 6, 8 или 12 [10].

На вопрос, является ли олово неметаллом (*cepoe олово*, *c. m.* алмаза, *к. ч.* 4), Г.Б.Бокий ответил однажды: «Если у олова координационное число 4, значит, оно неметалл». Добавим, что в белом олове *к. ч.* Sn 6, и это, по Бокию, металл. Нараи-Сабо (см. табл. 1.1) также относит олово как к металлическим (*белое олово*), так и к атомным (*cepoe олово*) кристаллам.

1.2. САМОРОДНЫЕ ЭЛЕМЕНТЫ

Ряд простых веществ встречается в природе в самородном виде, преимущественно металлы, все они характеризуются низкой окисляемостью, в основном это элементы *семейства платиноидов* (Os, Ir, Pt, Ru, Rh, Pd), *группы меди* (Cu, Ag, Au), *семейства железа* (Fe, Co, Ni, главным образом в метеоритах), редко и в небольших количествах встречаются в природе самородные Zn, Hg, In, Sn, Pb, предположительно также Al, Cd и др. В основном *самородные металлы* имеют *n. к. у.*, *n. г. у., о. ц. к.*¹, упаковку, изредка — несколько искаженные кубические структуры. Из неметаллов в самородном виде известны C; As, Sb, Bi; S, Se, Te; все они, кроме алмаза, имеют молекулярные структуры [10; 11].

¹ Аббревиатура терминов расшифрована в конце книги в списке сокращений.

1.3. МОЛЕКУЛЯРНЫЕ СТРУКТУРЫ ПРОСТЫХ ВЕЩЕСТВ

Для молекулярных структур характерны два типа химической связи: ковалентная связь внутри молекул и *вандерваальсова связь* (остаточная) между молекулами. Формирование структур простых неметаллических веществ с ковалентной связью описывается, за редкими исключениями, *правилом Юм-Розери*.

Число ближайших к атому соседей по ковалентной связи равно 8 – N, где N — количество электронов во внешней оболочке атома (номер группы).

1.3.1. VIII группа (инертные газы)

«Молекула» инертного газа состоит из одного атома (по Юм-Розери: 8 - 8 = 0 ноль соседей по ковалентной связи), т. е. кристаллы инертных газов представляют собой тривиальный случай молекулярных структур. В остальном инертные газы полностью отвечают представлениям о молекулярных химических соединениях: атомы в них электронейтральны, поэтому между атомами отсутствует электростатическое взаимодействие, характерное для ионных кристаллов. В то же время атомы инертных газов имеют завершенное электронное строение, и потому они не образуют ковалентных связей. Кроме того, атомы инертных газов имеют сферическую симметрию, они не являются полярными, вследствие чего в них не проявляются межмолекулярные электростатические взаимодействия дипольдипольного типа. Несмотря на это кристаллы инертных газов существуют, и достигается это за счет вандерваальсовых сил электростатического взаимодействия между наведенными, постоянно изменяющимися во времени диполями.

Гелий даже при исключительно низких температурах переводится в твердое состояние только под давлением. Остальные инертные газы кристаллизуются при атмосферном давлении в структуре с *кубической плотнейшей упаковкой*, в качестве примера рассмотрим далее неон.

Гелий Не. Известны три полиморфные модификации гелия: при самой низкой температуре — объемноцентрированная кубическая фаза (*с. т.* β-Fe, длина связи He—He равна 3.56 Å при 1.73 К и 29 атм.), которая при слегка повышенной температуре переходит в плотнейшую гексагональную упаковку (*с. т.* Mg, He— He = 3.47 Å при 3.95 К и 129 атм.), а при 16 К и 1255 атм. — в кубическую плотнейшую упаковку (*с. т.* Cu, He—He = 3.00 Å).

Неон Ne, с. m. Cu. T 3.3 K, *кубич. с., np. гp.* $Fm\overline{3}m$, a = 4.52 Å, Z 4, $D_x = 1.44$ г/см³, *к. ч.* 12 (рис. 1.1, a). Поделив пополам межатомные расстояния: (He 3.00, Ne 3.20, Ar 3.84, Kr 3.95, Xe 4.44, Å), получаем радиусы вандерваальсового взаимодействия атомов инертных газов в кристаллическом состоянии (рис. 1.1, δ); они возрастают при увеличении номера элемента.

Рис. 1.1. Инертные газы: *а* — кристаллическая структура; *б* — атомные радиусы; *в* — температура плавления

Говоря вообще, в ряду He—Rn увеличивается размер атомов (рис. 1.1, *б*), в связи с чем соединения становятся более прочными: возрастает температура плавления (рис. 1.1, *в*), понижаются термическое расширение и сжимаемость. Это согласуется с представлениями о том, что вандерваальсовы силы очень слабы, действуют только между поверхностями молекул и потому оказываются тем большими, чем больший размер имеет молекула и, следовательно, больше ее поверхность.

Термическое расширение кристаллического неона в интервале 5–23 К взлетает почти в 40 раз и устремляется практически в бесконечность (1723 10⁻⁶ K⁻¹ при 23 K), что и вызывает плавление Ne при 25 K.

Следствием слабых остаточных связей между атомами инертных газов являются низкие прочностные характеристики их кристаллов: низкая *температура плавления* (Ne 25 K, Ar 84 K, Kr 116 K, Xe 161 K, Rn 202 K) (см. рис. 1.1, *в*), высокие значения *коэффициентов термического расширения* (линейный коэффициент, 10⁻⁶ K⁻¹: Ne 46, 337 и 1723 при 5, 10 и 23 K соответственно; Ar 667 при 80 K; Kr 430 при 100 K; Xe 421 при 155 K) и коэффициентов сжимаемости (средний линейный коэффициент, 10⁻⁶ бар⁻¹: Ne 1006 при 4 K; Kr 560 при 77 K) и т.д.

Для сравнения средний коэффициент линейного термического расширения неорганических соединений может быть оценен в 10⁻⁵ К⁻¹. Можно видеть, что термическое расширение инертных газов в кристаллическом состоянии на порядки превосходит среднее значение, характерное для неорганических соединений.

Сходные кристаллические структуры и свойства демонстрируют *молеку-лярные соединения*, образованные сферическими (неполярными) молекулами. Сферическую форму молекул можно представить как результат их трехмерного вращения. Вращающиеся двухатомные молекулы водорода H₂ располагаются в кристаллической структуре по позициям гранецентрированной кубической упаковки (плотность равна 0.088 г/см³ при 4.2 K). Такие вещества, как N₂, CO, HCl, HBr, CH₄, PH₃, AsH₃, H₂S, H₂Se, вблизи температур плавления также приобретают высокосимметричную *г. ц. к.* упаковку за счет вращения электронейтральных молекул. Подробнее вращение как форма теплового движения атомов и молекул в кристаллических веществах рассмотрено в «Общей кристаллохимии» на примере *нормальных парафинов* (разд. 6.3.4).

1.3.2. VII группа (галогены)

С. т. хлора Cl₂ (ICSD # 24653, 18154, 201696)², *ромбич. с., пр. гр. Стса, а* = 6.24, *b* = 4.48, *c* = 8.26 Å, *Z* 4, *D*_{*x*} = 2.03 г/см³, *к. ч.* Cl 1. Два атома хлора образуют по ковалентному механизму электронейтральную неполярную молекулу-гантель Cl₂. Такие молекулы имитируют в ромбической структуре Cl₂ паркетную кладку (рис. 1.2, *a*), связи между молекулами — вандерваальсовые. Расстояние Cl—Cl в молекуле равно 2.02 Å, между молекулами — 3.34 Å, отсюда атомный радиус Cl может быть оценен как 1.01 Å, вандерваальсовый радиус Cl равен 1.67 Å. Аналогично образуются изоструктурные молекулярные соединения Br₂ (ICSD # 24019) — *a* = 6.67, *b* = 4.48, *c* = 8.72 Å при 123 К и I₂ (ICSD # 24009) — *a* = 7.255, *b* = 4.79, *c* = 9.78 Å при 298 K). *Кубическая модификация* β-F₂ изоструктурна с O₂ при 50 К.

Атомные радиусы галогенов, определенные из кратчайших межатомных расстояний, равны: F 0.71, Cl 1.01, Br 1.14, I 1.33 Å (рис. 1.2, δ). По мере увеличения размера (и поверхности) молекул в ряду F₂, Cl₂, Br₂, I₂ температура плавления этих молекулярных веществ возрастает: -220, -101, -7, 114 °C соответственно (рис. 1.2, β).

1.3.3. VI группа (кислород и халькогены)

Структуры кислорода. Кислород образует молекулярные кристаллы с расстоянием O–O = 1.208 Å между атомами в молекуле O₂. Известны три кристаллические модификации кислорода, построенные из двухатомных молекул O₂ (с одним соседом, вопреки правилу Юм-Розери 8 – 6 = 2): *ромбическая* α-фаза ниже 24 К, *ромбоэдрическая* β-фаза в интервале 24–44 К и *кубическая* γ-фаза между 44 и 45 К (точка плавления). В последней фазе перед плавлением молекулы O₂ вращаются, и центры сфер находятся на расстоянии 3.68 Å друг от друга.

Структуры халькогенов. В кристаллических структурах *серы, селена и теллура*, как и следует из правила Юм-Розери 8 – 6 = 2, каждый атом имеет два ближайших соседа по ковалентной связи, что ведет к образованию либо колец S₈, S₆ и S₁₂, либо цепочек в гексагональных модификациях Se и Te.

² Нередко для кристаллической структуры какого-либо минерала в базе ICSD содержатся несколько *.cif-файлов (entries), содержащих соответственно результаты нескольких уточнений структуры. В таком случае обычно приводится несколько ссылок (entries ICSD) — в первую очередь наиболее ранние, а также одни из последних по времени — как правило, наиболее точные структурные данные (entries ICSD).

Рис. 1.2. Галогены: *а* — кристаллическая структура (на примере Cl₂); *б* — атомные радиусы; *в* — температура плавления

С.т. серы а-S (ICSD # 38147, 43251). *Низкотемпературная* (в том числе в атмосферных условиях) полиморфная модификация, ромбич. с., пр. гр. Fddd, a = 10.46, b = 12.87, c = 24.49 Å, Z 128, к. ч. S 2, стабильна при комнатной температуре. Гофрированные кольца S₈ (рис. 1.3, a) расположены столбиком (на рисунке изображены два кольца из бесконечной колоды), гофрировка видна на другой серии колец, расположенных перпендикулярно плоскости рисунка. Расстояния S—S в кольце равны 2.05 Å. При 95.6 °C ромбическая фаза превращается в моноклинную β -модификацию, устойчивую до плавления при 122 °C. Ромбическо-моноклинное полиморфное превращение серы представляет собой исключение из тенденции повышения симметрии вещества с ростом температуры.

С.т. серы ү-S (ICSD # 28140–28144). Относительно высокотемпературная модификация (метастабильна ниже 95.6 °С), *монокл. с., пр. гр.* $P2_1$, a = 10.88, b = 10.76, c = 10.72 Å, $\beta = 95.64^{\circ}$, Z 48, κ . ч. S 2 при -53 °С. Моноклинная структура, как и ромбическая, сложена восьмерными кольцами S₈. Известна также ромбоэдрическая модификация серы с кольцами S₆.

Ярко-желтые конусы серы на вулканах (в-н Мутновский на п-ве Камчатка, в-н Менделеева на о. Кунашир и др.) могут быть представлены обоими полиморфами: в холодной зоне они ромбические, в горячей, вблизи жерла серного конуса, — моноклинные. А рентгенофазовый анализ, выполненный в комнатных условиях, зафиксирует в обоих случаях присутствие ромбической модификации.

С.т. селена Se. Стабилен металлический темносерый Se, *гексагон. с., пр. гр.* $C3_{12}$, a = 4.36, c = 4.96 Å, Z 3, $D_x = 4.81$ г/см³, *к. ч.* Se 2. Структура выполнена спи-

Рис. 1.3. Основные структурные типы халькогенов: *a* — *с. т.* ромбической (низкотемпературной) модификации α-S; *б* — *с. т.* стабильной в атмосферных условиях гексагональной модификации Те

ральными цепями, идущими параллельно друг другу и оси *с*. Основой двух других (моноклинных) модификаций селена, как и ромбической серы, являются гофрированные кольца Se₈ с расстояниями Se—Se = 2.32 Å.

Теллур (рис. 1.3, *б*) изоструктурен гексагональному селену и образует с ним непрерывный ряд твердых растворов, расстояния Te—Te = 2.82 Å.

С увеличением *атомного радиуса халькогенов* в ряду S—Se—Te (1.02, 1.16 и 1.41 Å соответственно) повышается температура их плавления: 119.3° (α -S), 112.8° (β -S), 217° (Se, серый), 449.8 °C (Te).

1.3.4. V группа (подгруппа азота)

Структуры азота. Азот, вопреки правилу Юм-Розери (8 – 5 = 3), образует двухатомные молекулы N₂ с одним соседним атомом, из таких молекул и строятся кристаллы азота. При 35 К азот кристаллизуется в кубической α -N₂ модификации, *пр. гр. Ра* $\overline{3}$ или *P*2₁3 (ICSD # 15472 или 15819 по разным данным), молекулы N₂ расположены в ней по позициям к. п. у. В интервале 35.4–63.1 К существует *гексагональная* β -N₂ фаза, *пр. гр. P6*₃/*mmc* (ICSD # 43429), хаотически вращающиеся молекулы N₂ занимают в ней позиции *г. п. у.* С повышением давления образуется *тетрагональная* фаза высоких давлений γ -N₂, *пр. гр. P4*₂/*mnm* (ICSD # 24891).

Структуры фосфора. Белый фосфор состоит из тетраэдрических молекул Р₄, в которых каждый атом связан с тремя другими с аномально малым углом

связей Р—Р—Р 60°. При нагревании до 180 °С тетраэдрические молекулы разлагаются, и образуется аморфный красный фосфор, в трехмерном каркасе которого каждый атом фосфора также связан с тремя другими атомами, но уже с углом связи 102°. При 450 °С происходит медленная кристаллизация так называемого фосфора Гитторфа, кристаллическая структура которого сложена бесконечными трубками из атомов Р с пятиугольным сечением. Плавится фосфор Гитторфа выше 600 °С с образованием в расплаве тетраэдрических молекул Р₄. Кроме того, известен черный фосфор, обладающий ромбической слоистой структурой.

Структуры мышьяка. Мышьяк имеет модификацию белого фосфора (*желтый мышьяк*), черного фосфора (*ромбический мышьяк*) и *ромбоэдрическую модификацию*, которая характерна также для *сурьмы* и *висмута*.

1.4. АТОМНЫЕ СТРУКТУРЫ ПРОСТЫХ ВЕЩЕСТВ

1.4.1. IV группа (подгруппа углерода)

Исключительное значение в развитии квантовой химии и кристаллохимии принадлежит *углероду* как одному из органогенов, наряду с водородом, кислородом, азотом, хлором и др. Кроме того, кристаллические структуры полиморфов *углерода — алмаза и графита —* были расшифрованы исторически одними из первых, поэтому сведения о кристаллическом строении этих веществ использовались в качестве экспериментального материала для создания теории атомного и молекулярного строения кристаллических веществ. Достаточно вспомнить, что осознание алмаза как химического соединения (точнее — простого вещества) способствовало введению понятия *ковалентной связи*, а кристаллические структуры алмаза и графита лежали в основе учения о гибридизации электронных орбиталей в молекулах и кристаллах.

В с. т. алмаза кристаллизуются также кремний, германий и серое олово. Этот с. т. был открыт Брэггами в 1913 г. [12]. В обычных условиях алмаз является диэлектриком, а кремний и германий — полупроводниками, при затрате энергии (оптическом или термическом возбуждении) они начинают проводить электрический ток.

Кристаллы Si, Ge и Sn, как хорошо известно, не обладают высокой прочностью, так как прочность химической связи определяется не только ее характером (во всех соединениях *с. т.* алмаза связи ковалентные), но и длиной связи, которая в алмазе равна 1.54 Å, а в следующем за ним кремнии оказывается на 0.8 Å больше (табл. 1.2). Соответственно, изменяются и другие прочностные свойства: температура плавления (разложения) понижается от алмаза к олову, а *коэффициенты термического расширения* и *сжимаемости*, напротив, возрастают (см. табл. 1.2).

С. т. алмаза С (ICSD # 53779, 29151). *Кубич. с., пр. гр. Fd*3*m*, *a* = 3.57 Å, *Z* 8, *D_x* = 3.51 г/см³, *к. ч.* 4, фаза высоких давлений и температур (порядка 70 кбар и 2000 °C). Каждый атом углерода с *sp*³-гибридизацией валентных электронных орбиталей

Рис. 1.4. Структуры алмаза (а) и графита (б)

T ())				
Таблица 1 / Зависимость п	почностных своисте	з соелинении с т	апмаза от лпинь	і связеи
naonaga n.z. subnemilocib n	po moembix coonen	сосдинский сли	. annasa or grinnb	1 CD/ISC/I

Элемент	a, Å	d, Å	<i>Т</i> _{пл} , °С	α (10 ⁻⁶ °C ⁻¹)
С	3.567	1.54	3550	1.0
Si	5.431	2.35	1415	2.54
Ge	5.657	2.44	938	5.82
α-Sn (серое олово)	6.491	2.80	232	

Примечания: а — параметр кубической ячейки; d — межатомное расстояние; T_{пл} — температура плавления (в случае углерода — температура распада); а — коэффициент термического расширения.

должен быть окружен четырьмя ближайшими соседями по вершинам тетраэдра (см. также «Общую кристаллохимию»). Идеальным решением этой задачи является кристаллическая структура алмаза (рис. 1.4, *a*). Нередко эта структура условно рассматривается в терминах плотнейшей упаковки — *г. ц. к.* упаковка из атомов С, половина тетраэдрических пустот которой заполнена такими же атомами С. На рисунке элементарный куб разбит штриховыми линиями на октанты — восемь небольших кубиков, четыре из которых заполнены атомами углерода. Плотнейшая упаковка в понимании Барлоу в алмазе отсутствует, поскольку нарушается принцип чередования слоев «выступ во впадину».

Малое к. ч. 4 определяется направленными ковалентными связями в ущерб степени заполнения пространства (32% вместо 74% в случае плотнейшей упаковки). Однако «ажурность» строения алмаза не помешала ему проявлять высшую среди известных веществ твердость. **С. т. гексагонального графита С** (ICSD # 52230, 53781, 76767). *Гексаг. с., пр. гр.* $P6_3/mmc$, a = 2.46, c = 6.71 Å, Z 4, $D_x = 2.27$ г/см³, *к. ч.* 3, *тв.* 1–2. В случае sp^2 -гибридизации электронных орбиталей атом углерода образует три направленные связи под углом 120° друг к другу. Соответствующее окружение каждого атома углерода тремя другими атомами С достигается в графитном слое (рис. 1.4, b) путем укладки гексагональных колец, подобных бензольным. Плотность заполнения пространства в графите (21%) еще ниже, чем в алмазе (32%).

Четыре валентных электрона атома углерода используются для образования связей С с тремя соседями (среднее усилие связи равно ⁴/з *в.е.*), в то время как в алмазе те же четыре валентные электрона делятся с четырьмя соседними атомами (усилие связи 1 *в.е.*). Поэтому связи С–С в слое графита короче (1.42 Å), чем в алмазе (1.54 Å), и потому прочнее. Об этом свидетельствует и выделение одного графитового слоя — *графена*³.

Слои в структуре графита отстоят друг от друга на расстоянии 3.35 Å. «На таком большом расстоянии не может быть ковалентных связей. Каждый из слоев представляет собой гигантскую молекулу. Слои связаны друг с другом только слабыми вандерваальсовыми силами» [13, с. 175]. Поэтому слои (001) легко скользят друг относительно друга.

Резкая анизометричность кристаллического строения графита является причиной проявления им противоречивых и, казалось бы, взаимно исключающих друг друга физических свойств: в графите сочетается очень низкая твердость с высокой температурой разложения. Первое принято объяснять большим межслоевым расстоянием, второе — очень короткими связями (и потому прочными) в слое.

С. т. понсдейлита С (ICSD # 27422). Гексаг. с., пр. гр. $P6_3/mmc$, a = 2.51, c = 4.12 Å, Z 4, $D_x = 3.52$ г/см³, твердость 10. Фаза сверхвысоких давлений предполагается в глубинных оболочках Земли, обнаруживается в метеоритах, импактных образованиях совместно с графитом, образует микроскопические сростки с алмазом. Кристаллическую структуру можно представить как гексагональную плотнейшую упаковку атомов С, в которой половина тетраэдрических позиций занята также атомами С (рис. 1.5, *a*). Уместно сравнение структуры *лонсдейлита* с вюртцитовой ZnS. Вюртцит отличается от лонсдейлита тем, что половина атомов замещается цинком, а другая половина — серой, если в вюртците все атомы «выкрасить в один цвет», то структуры лонсдейлита и вюртцита становятся геометрически неразличимыми (рис. 1.5, *б*). Такие структуры называются гомеотипными (см. [4]; разд. 5.3.4).

С. т. ромбоэдрического графита С. *Тригон. с., пр. гр.* $R\overline{3}m$, a = 2.47, c = 10.06 Å, Z 2, $D_x = 2.27$ г/см³, κ . ч. С 3 [14]. В структуре *графита* нет слоя плотнейшей упаковки, в котором каждый шар имел бы шесть ближайших соседей, поэтому нет

³ За новаторские эксперименты по исследованию двумерного материала графена в 2010 г. была присуждена Нобелевская премия по физике 2010 г. А.К. Гейму и К.С. Новоселову.

Рис. 1.5. Пример гомеотипных структур: *а* — лонсдейлит C; *б* — вюртцит ZnS

в графите и плотнейшей упаковки. Тем не менее можно утверждать, что чередование графитовых слоев по принципу ... ABAB... приводит к широко распространенной гексагональной модификации графита (см. рис. 1.4, *б*), а последовательность ... ABCABC... ведет к редко встречаемой ромбоэдрической форме.

С расшифровкой кристаллической структуры графита связан исторический казус. Первое определение структуры было выполнено в 1916 г. П.Дебаем и П.Шеррером с использованием метода порошка. Авторы опубликовали структуру графита в статье [14], в которой они сообщали о только что открытом ими методе порошка. Таким образом, расшифровка, помимо собственной ценности, позволяла авторам продемонстрировать возможности нового метода. Структура графита описывалась ими как ромбоэдрическая (трехслойная). Однако в 1922 г. были опубликованы результаты сразу трех новых, на этот раз монокристальных, расшифровок структуры [15–17], согласно которым графит оказывался гексагональным (двухслойным). Вскоре последовала разгадка: авторам первой расшифровки попалась редкая ромбоэдрическая модификация графита.

С. т. фуллеренов С₆₀ и С₇₀. Одной из находок последних десятилетий являются фуллерены — полиморфные модификации углерода. Фуллерены построены из молекул состава С₆₀, С₇₀ и т. п., напоминающих футбольный мяч с олимпийской символикой (с осями симметрии пятого и шестого порядков), вследствие чего такие структуры никак нельзя назвать атомными.

Структуры нитрида бора BN, подобные графитовой и алмазной, представлены на рис. 2.3.

Структуры кремния и германия. *Кремний* (*с. т. алмаза*, см. рис. 1.4, *а*) переходит в *с. т.* белого олова при 120 кбар, *германий* — при 200 кбар.

С. т. олова Sn. *Серое олово* (α) кристаллизуется в *с. т.* алмаза *пр. гр. Fd*3*m* (ICSD # 40039, см. рис. 1.4, *а*), металлическое *белое олово* (β) — в тетрагональной *пр. гр.* I4₁/*amd*, *к. ч.* Sn 6, *к. п.* — искаженный октаэдр (ICSD # 52269). При температуре 314 °C и давлении 39 кбар белое олово превращается в другую *тетрагональную І-модификацию олова*, имеющую объемноцентрированную решетку (ICSD # 108748), причем атомы Sn располагаются только в узлах решетки.

1.4.2. III группа (бор)

Бор является единственным неметаллом в третьей группе периодической системы. В соответствии с номером группы атом бора стремится образовать ковалентные связи с пятью (8 – 3 = 5) другими атомами бора. Действительно, основной структурной единицей в кристаллическом боре является икосаэдр, составленный из 12 атомов [9, с. 103]. Через каждую вершину правильного икосаэдра (через атом бора) проходит ось пятого порядка, которая связывает пять ближайших к данному атому соседей.

Известно несколько кристаллических модификаций бора. В тетрагональной фазе правильные икосаэдры В₁₂ связываются друг с другом при помощи еще двух атомов бора. В *ромбоэдрическом боре* почти правильные икосаэдры располагаются по позициям слегка искаженной кубической плотнейшей упаковки.

1.5. СТРУКТУРЫ МЕТАЛЛОВ И ИХ ТВЕРДЫХ РАСТВОРОВ

1.5.1. Основные структурные типы металлов

К металлам относят около 75 химических элементов (см. табл. 1.1). Подавляющее большинство из них кристаллизуется в трех структурных типах: кубической и гексагональной плотнейших упаковках и кубической объемноцентрированной решетке. Причем электронное строение металлов, относящихся к одному и тому же структурному типу, оказывается разнообразным и не позволяет объяснить выбор тем или иным металлом типа кристаллической структуры.

С. т. о. ц. к. железа β-Fe (ICSD # 52258, 53451, 53452, 53802, 53803, 180969– 180971 и др.). *Кубич. с., пр. гр. Im* $\overline{3}m$, a = 2.87 Å, Z 2, к. ч. 8 (куб). Структура представляет объемноцентрированную кубическую решетку, атомы располагаются только в узлах решетки (рис. 1.6, a) в окружении восьми таких же атомов по вершинам куба, примеры разнообразия металлов этого *с. т.*: щелочные металлы Li, Na, K, Rb, <u>Cs</u>⁴, тяжелые щелочноземельные металлы <u>Ca</u>, <u>Sr</u>, <u>Ba</u>, другие элементы U, <u>Np</u>, <u>Ti</u>, <u>Zr</u>, <u>Hf</u>, β -Fe (до 906 и от 1404 °C до плавления при 1530 °C). При повышении давления объемноцентрированные фазы (коэффициент заполнения пространства — 68.1%) могут переходить в более плотные гранецентрированные фазы (74.1%), пример дает Cs при 41 кбар.

С. т. меди Cu (ICSD # 43493, 53755), *кубич. с., пр. гр. Fm* $\overline{3}$ *т, a* = 3.61 Å, *Z* 4, *к. ч.* 12 (кубооктаэдр). Кубическая плотнейшая упаковка, гранецентрированная кубическая решетка, атомы располагаются только в узлах решетки (рис. 1.6, *б*), коэффициент заполнения пространства — 74.1 %. В этом *с. т.* кристаллизуются: <u>Ca, Sr, Al</u>, γ-<u>Fe</u> (906–1404 °C), β-<u>Co</u>, β-<u>Ni</u>, Rh, Pd, Ir, Pt, Cu, Ag, Au, Pb и т. п.

С. т. магния Mg (ICSD # 52260, 76259), *гексаг. с., пр. гр.* P6₃/*mmc, a* = 3.21, *c* = 5.21 Å, Z 2, D = 1.74 г/см³, к. ч. 12 (6 + 6). Плотнейшая гексагональная упаковка,

⁴ Подчеркнутый символ элемента означает существование также и других модификаций.

Рис. 1.6. Основные структурные типы металлов: *a* — β-Fe (*o. ц. к.*, см. [4, рис. 6.7]); *b* — Cu (*г. ц. к.*); *b* — Mg (*n. г. у.*)

атомы располагаются только в узлах решетки (рис. 1.6, *в*), коэффициент заполнения пространства — 74.1%. Межатомные расстояния в слое (6 соседей) и между слоями (3 + 3) различны, в связи с чем отношение параметров *с/а* отклоняется от характерного для идеальной гексагональной плотнейшей упаковки 1.633. К этому *с. т.* относятся легкие щелочноземельные элементы Ве и Мg, большинство *TR*-элементов, <u>Ti</u>, <u>Zr</u>, <u>Hf</u>, Tc, Re, Ru, Os, α -<u>Co</u>, α -<u>Ni</u>, Zn, Cd, и полиморфная модификация ε -<u>Fe</u>, которая, по мнению ряда исследователей, составляет основу *металлического ядра в центре Земли*.

Полиморфизм железа. В атмосферных условиях устойчива ферромагнитная модификация **a-Fe**, которая по данным нейтронорентгенографии является тетрагональной, при 770 °C эта фаза теряет магнитные свойства и превращается в парамагнитную о. ц. к. модификацию **β-Fe**. При температуре 906 °C наблюдается переход последней в гранецентрированную кубическую модификацию **γ-Fe** (ICSD #), а γ-полиморф при 1404 °C снова переходит в объемноцентрированную **β-Fe**, которую также называют **δ**-фазой (ICSD # 44863), плавится, по данным разных авторов, при 1530 °C. Все полиморфные превращения железа являются обратимыми. При высоких давлениях образуется гексагональная модификация **ε-Fe**. Основным компонентом железных метеоритов является сплав Fe и Ni, имеющий структуру **a-Fe**.

1.5.2. Твердые растворы металлов

Структуры никеля и кобальта представляют собой кубическую гранецентрированную упаковку (см. рис. 1.6, б; с. т. Си, $a_{Ni} = 3.524$, $a_{Co} = 3.548$ Å), межатомные расстояния в них различаются лишь на 1%, поэтому Ni и Co образуют непрерывные твердые растворы в широком интервале температур. Золото (a = 4.078 Å)

и алюминий (a = 4.050 Å) имеют такие же структуры и так же близки друг к другу по размеру, но они почти не смешиваются с образованием растворов даже в расплаве: причина заключается в различном электронном строении этих элементов. Железо, например, не смешивается по этой же причине с серебром, щелочными и щелочноземельными элементами.

Полная изоморфная смесимость и полная несмесимость являются крайними случаями. Более частыми оказываются ограниченные твердые растворы, в этом случае пределы растворимости зависят от температуры. Если сплавить металлы с образованием кристаллического твердого раствора, то при охлаждении пределы смесимости обычно сокращаются, и в твердом растворе может происходить или усиливаться упорядочение в расположении атомов разных металлов по различным позициям.

Типичным и наиболее изученным является сплав меди и золота. В *г. ц. к.* структурах Cu (a = 3.615 Å) и Au (a = 4.078 Å (см. рис. 1.6, б) межатомные расстояния различаются на 13 %, что в условиях высоких температур допускает образование непрерывного ряда твердых растворов. При медленном охлаждении может происходить перераспределение атомов Cu и Au с образованием упорядоченных твердых растворов по узлам *г. ц. к.* решетки. При определенных стехиометрических соотношениях упорядочение может приводить к появлению новых фаз — упорядоченных фаз металлов, рассмотрению которых посвящен следующий раздел.

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

Беккерт М. Мир металла. М.: Мир, 1980. 152 с.

- Белов Н. В., Годовиков А. А., Бакакин В. В. Очерки по теоретической минералогии. М.: Наука, 1982. 211 с.
- Carbon in Earth / Eds R. M. Hazen, A. P. Jones, J. A. Baross // Rev. Miner. & Geochem. Vol. 75. Miner. Soc. America. Washington, D. C., 2013. 713 p.
- *Hume-Rothery W.* Researchers on the nature, properties, and condition of formation of intermetallic compounds // J.Inst. Metals. Vol. 35. P. 309–335.