

НАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК БЕЛАРУСИ Институт экспериментальной ботаники им. В.Ф. Купревича

Ж. М. АНИСОВА, Б. И. ЯКУШЕВ

ПРИРОДНЫЕ ИЗОТОПЫ УРАНА В ПОЧВАХ И РАСТЕНИЯХ СОСНОВЫХ ЛЕСОВ МИНСКОЙ ВОЗВЫШЕННОСТИ

Минск «Белорусская наука» 2008 **Анисова, Ж. М.** Природные изотопы урана в почвах и растениях сосновых лесов Минской возвышенности / Ж. М. Анисова, Б. И. Якушев. — Минск : Белорус. наука, 2008. — 163 с. — ISBN 978-985-08-0933-9.

В книге представлены результаты комплексных исследований авторов по аккумуляции и распределению природных изотопов урана в компонентах биогеоценозов сосновых лесов центральной части Беларуси. Впервые выявлено участие растительного покрова на примере сосновых лесов Беларуси в перераспределении природных изотопов урана по генетическим горизонтам почв. Установлены особенности аккумуляции природного урана в органах и структурах древесных пород — Pinus sylvestris L., Betula pendula Roth и растений-доминантов живого напочвенного покрова, включая сосудистые растения, а также мхи и лишайники сосновых лесов. Исследования по аккумуляции урана растительностью природных фитоценозов ранее в Беларуси не проводились, приведенные в книге материалы являются уникальными.

Предназначена для специалистов и научных сотрудников, работающих в области ботаники, экологии и радиоэкологии.

Научный редактор член-корреспондент НАН Беларуси Е. А. Сидорович

Рецензенты:

доктор биологических наук В. В. Сарнацкий, доктор биологических наук В. И. Гапоненко

ПРЕДИСЛОВИЕ

Важной проблемой биогеоценологии является изучение круговорота веществ и энергии в биосфере [145, с. 29]. К настоящему времени в этом плане достаточно хорошо изучено поведение макроэлементов, в меньшей степени освещены закономерности круговорота микроэлементов. Сведения о круговороте природных радионуклидов в системе почва-растение-почва в биогеоценологической науке крайне ограничены. Тем не менее в природной среде известно более 230 естественных радиоактивных изотопов [91, с. 9; 221, с. 38]. Все они являются составной частью биосферы и находятся в ней повсеместно — в литосфере, атмосфере, гидросфере и живых организмах. В зависимости от степени распространения и значимости в общей радиоактивности земной коры природные радионуклиды делят на четыре большие группы [221, с. 34]. Уран, относящийся к тяжелым естественным радионуклидам (ТЕРН), входит в первую группу — наиболее распространенных и долгоживущих ($T_{1/2}$ до $4,5\cdot10^9$ лет) элементов в природе [91, c. 9: 161, c. 18].

Систематическое изучение уровней содержания естественных радионуклидов (ЕРН) в различных компонентах биосферы было развернуто в начале XX в. под руководством В. И. Вернадского и продолжено А. П. Виноградовым. Изначально интерес к изучению миграции различных естественных радиоактивных элементов (урана, радия, тория и др.) в природной среде и их накоплению растениями был связан в основном с разработкой биогеохимических методов поиска этих элементов как важных источников сырья [41, 117, 125, 136, 272]. В 60-е годы большое значение приобрели работы, связанные с изучением

вопросов распределения и миграции естественных радионуклидов в системе почва—растение. После определенного спада в изучении миграции ЕРН в почвенно-растительном покрове, обусловленного прежде всего повышенным вниманием к искусственным радионуклидам глобальных выпадений, в середине 70-х годов вновь заметно оживился интерес к ЕРН в связи с возросшим пониманием возможного загрязнения среды и этими радионуклидами. В настоящее время изучение естественно-радиоактивных элементов опять так же актуально, как и в 60-е годы. Возвращение к этому вопросу стало возможным в связи с отдалением последствий чернобыльской катастрофы.

В отечественной и зарубежной литературе [2, 48, 49, 51-61, 66-73, 78-83, 91-93, 97-104, 107, 110, 111, 154, 172—186, 209—220, 267—296 и др.] накоплен большой материал о валовом содержании, миграции и формах нахождения изотопов урана, тория, радия и др. в различных компонентах биосферы — в почвах разных природно-климатических зон выявлены особенности их аккумуляции и распределения представителями ведущих систематических групп растительных организмов. Однако значительно меньше внимания уделяется экологическим аспектам поведения тяжелых естественных радионуклидов в компонентах природно-растительных комплексов и практически нет информации об особенностях накопления ТЕРН растениями природных фитоценозов в различных условиях произрастания при фоновом содержании их в почвах, а это в свою очередь требует проведения дальнейших всесторонних исследований, анализа результатов и обобщений. Таким образом, наблюдается пробел в изучении ЕРН в биогеоценозе как экосистеме, что диктует необходимость тщательного и систематического анализа их поведения в компонентах биогеоценозов.

Обобщить имеющиеся материалы в этой области и дополнить их данными новых исследований — основная задача этой работы. Поведение естественных радионуклидов в биосфере должно быть предметом дальнейшего интенсивного изучения, так как их роль в решении многих экологических вопросов очевидна. Кроме того, объем научной информации, связанный с изучением природного радиационного фона (ПРФ), который определяется естественными радиоактивными элементами, позволяет по-новому подойти к трактовке радиационно-мутационной теории эволюции органического мира. С этих позиций исследование флоры и фауны на территориях как с естественным, так и повышенным ПРФ должно стать одной из важнейших задач современной экологии в вопросах познания эволюции организмов [3, 112, 138].

Исследования фонового содержания естественных радионуклидов в растениях и почвах Беларуси находятся на начальной стадии развития. Большая часть имеющейся информации относится к 50—70-м годам XX в. В этот период были выявлены и изучены основные закономерности распределения естественных изотопов (U, Ra, ⁴⁰K) в ландшафтах: в покровных горных породах в зависимости от условий образования и состава отложений, в различных типах почв в связи с их формированием и составом почвообразующих пород, в неодинаковой фациальной и ландшафтной обстановках, обусловленных особенностями геологического развития региона в антропогене. Оценены средние концентрации этих элементов в отложениях литогеохимических провинций, установлен нижекларковый уровень их распространения по отношению к кларкам земной коры [64, 75]. Однако эти работы освещают в основном роль радиоактивных изотопов в геохимических процессах и возможности их использования для решения геологических проблем. Значительный интерес для решения ряда задач биологии, фитоценологии, экологии и других наук представляет исследование специфичности аккумуляции природных изотопов урана (U различными видами растений. Изучение закономерностей аккумуляции растениями ТЕРН позволяет полнее раскрыть важную проблему их поступления в растения, способствует выяснению их участия в биологическом круговороте веществ, а также разработке принципов экологического нормирования содержания естественных радионуклидов в компонентах природных экосистем.

Природный уран является одним из важнейших долгоживущих ТЕРН Земли и представлен тремя естествен-

ными изотопами — 238 U, 235 U и 234 U. Их относительное содержание в природном U составляет соответственно 99,28; 0,71 и 0,006 % [228, с. 187]. Поэтому, определяя уран в биологических объектах, допустимо говорить только об изотопе ²³⁸U. В то же время количественные показатели включения природного урана и его роль в основных компонентах природно-растительных комплексов Беларуси практически не изучены. Исследований аккумуляции U различными видами растений, прежде всего доминантами природных фитоценозов, в связи с условиями их произрастания и содержания данного элемента в почвах республики вообще не проводилось. Между тем растительные организмы как базовое звено трофической цепи являются ведущим источником поступления тяжелых природных радионуклидов в организм человека. Поэтому у ботаников, геоботаников, экологов появилась настоятельная необходимость изучения поведения тяжелых радионуклидов в системе почва-растение.

УРАН В ПОЧВАХ И РАСТЕНИЯХ ЭКОСИСТЕМ

В развитии учения о естественных радионуклидах можно выделить несколько этапов. В 1920—1930 гг. — на первом этапе — основное внимание было уделено количественной характеристике ведущих компонентов фона. В этот период, характеризовавшийся интенсивным исследованием явлений радиоактивности, бурным развитием ядерной и атомной физики и радиохимии, встал вопрос о биологической роли естественного радиационного фона в жизни организмов, что не только не утратило первостепенного значения в последующие годы, но, наоборот, вызывало нарастающий интерес.

На втором этапе — в конце 30-х—40-х годах основные разработки были сконцентрированы на изучении особенностей распределения в различных природных средах долгоживущих радионуклидов из числа ведущих в смеси тяжелых естественных радионуклидов, в первую очередь 238 U, 232 Th и 226 Ra. При этом была поставлена задача разработки биогеохимических методов поиска урановых месторождений [41, 117, 125, 136, 272].

Конец 40-х—50-е годы — период интенсивных ядерных испытаний и бесконтрольного выброса в биосферу больших количеств искусственных радионуклидов, который можно считать третьим этапом в развитии учения о естественном радиационном фоне. Внимание к проблеме изучения естественных радионуклидов было ослаблено, экспериментальные работы ограничивались в основном сравнением прироста фона за счет выброса в биосферу искусственных радионуклидов и решением аналитических задач разделения в объектах природной среды естественных и искусственных радионуклидов. Вопросам распре-

деления и миграции ЕРН в почвенно-растительном покрове уделялось значительно меньше внимания.

Наиболее глубокое, систематическое и направленное изучение естественной радиоактивности почв было выполнено в 60-е годы под руководством В. И. Баранова [32—35]. Результаты этих исследований, а также данные других авторов были обобщены в широко известной работе В. И. Баранова и Н. Г. Морозовой [32], где на основании изучения 50 генетических типов и подтипов почв был установлен ряд закономерностей по содержанию и распределению ЕРН в почвах разных климатических зон.

Положение существенно изменилось в конце 60-х годов, когда интенсивность глобальных радиоактивных выпадений резко упала. Данные по распределению и поведению U и Тh в породах, водах и донных отложениях, накопленные в разные годы, были обобщены в целом ряде работ: А. П. Виноградова [51, 53], Л. С. Евсеевой, А. И. Перельмана, И. Е. Иванова [82], А. А. Саукова [192, 193], А. А. Смыслова [198], И. Е. Старика [206, 207] и др.

Начало последнего, четвертого, этапа в развитии исследований о естественном радиационном фоне можно датировать концом 60-х — началом 70-х годов. Этот этап характеризуется значительным усилением внимания к проблеме естественного радиационного фона в экологическом и радиационно-гигиеническом планах. По исследованиям, выполненным в эти годы, наиболее полное представление о содержании, интенсивности биологического поглощения и характере распределения ТЕРН в компонентах природных экосистем разных природно-климатических зон можно найти в монографиях Д. М. Гродзинского [68] — для Украины, Б. И. Груздева [71] — в одном из горных районов среднетаежной зоны Коми АССР, А. Л. Ковалевского [99] — для районов Западной Сибири, В. В. Ковальского с соавт. [103, 104] — для Иссык-Кульской котловины, Е. М. Никифоровой и Б. Я. Юфа [139] — для Забайкалья, А. С. Султанбаева [210, 211] — для Северной и Южной Киргизии и в других работах. Изучение вопросов миграции естественных радионуклидов продолжало набирать силу и приобретало качественно новую основу. В середине 70-х был разработан метод определения изотопов урана, радия и тория в водах, почвах и растениях (А. И. Таскаев, И. И. Шуктомова), благодаря которому стало возможным использовать метод изотопных неравновесий в радиоэкологических исследованиях.

После определенного спада в изучении миграции ЕРН в почвенно-растительном покрове, обусловленного прежде всего повышенным вниманием к искусственным радионуклидам глобальных и аварийных выпадений, в настоящее время вновь заметно оживился интерес к естественным радионуклидам в связи с возросшим пониманием возможного их влияния как экологического фактора среды.

Для работ современного этапа исследований характерно, что в них, как правило, используется или ограниченное число объектов или (и) ограниченное число радионуклидов. Исключение составляют монографии А. А. Искры, В. Г. Бахурова [91], Н. А. Титаевой, А. И. Таскаева [215], особо следует отметить фундаментальную работу, написанную большой группой авторов, — «Тяжелые естественные радионуклиды в биосфере» под редакцией Р. М. Алексахина [225]. Все они имеют обобщающий и комплексный характер. В этом отношении заслуживают внимания комплексные работы Коми научного центра, выполненные под руководством К. И. Масловой, В. И. Маслова, В. И. Груздева, проводивших широкомасштабные исследования вопросов миграции естественных радионуклидов в почвенно-растительном покрове на территориях с природно-повышенным их содержанием [165—168], работы П. И. Собакина в Южной Якутии [199-201], Л. П. Рихванова в Томске и Томской области [36, 119, 177— 182]. Однако значительная часть исследований данного периода носит эпизодический и часто региональный характер. Необходимо отметить, что в Беларуси совсем не проводилось изучение миграции естественных радионуклидов в почвенно-растительном покрове.

В последние десятилетия в отечественной и зарубежной литературе появилось достаточно большое число работ по содержанию и поступлению естественных радионуклидов в растения [26, 67, 86, 88, 97, 110, 114, 129, 135,

156, 212—215, 217—219, 225, 235, 239, 240, 242, 263, 270, 271, 281, 287, 292, 294 и др.]. Вместе с тем вопрос о переходе естественных радионуклидов в системе почва—растение до сих пор изучен недостаточно.

1.1. Характеристика урана как химического элемента

Аббревиатура ТЕРН (тяжелые естественные радионуклиды) — собирательное понятие для обозначения группы всех естественных радионуклидов семейств 238 U, 232 Th и 235 U без учета радионуклидного состава. Термин «тяжелые» позволяет отделить эти радионуклиды от большого числа более легких естественных радионуклидов (7 Be, 40 K и др.) [225, с. 4].

Особое место в ряду ТЕРН занимают природные изотопы урана (238 U, 235 U, 234 U), из которых два первых являются родоначальниками радиоактивных семейств. Родоначальником уранового ряда является изотоп 238 U, а изотоп 235 U, или актиноуран, — родоначальник актиниевого ряда [207, c. 28].

Химические свойства и геохимические особенности поведения урана в природных условиях изучены достаточно полно и в данном разделе дается краткий обзор литературы, освещающий эти вопросы. Основой послужили работы В. И. Данчева [76], К. Келлера [94], А. К. Лисицина [120], В. К. Маркова [127], А. И. Перельмана [149—153], А. А. Саукова [192, 193], А. А. Смыслова [198], И. Е. Старика [206, 207], Н. А. Титаевой [221, 222], Б. Н. Ласкорина, Б. Ф. Мясоедова [230] и др.

Уран (U) был открыт в образце уранинита М. Г. Клапротом в 1789 г., но в чистом виде выделен только в 1841 г. [228, с. 186]. Он относится к группе актиноидов. Атомная масса урана, вычисленная по данным масс-спектрометрии и радиоактивного распада, равна 238,03; химическими методами найдено значение 238,07 [7, с. 7]. Уран представляет собой очень плотный, блестящий белый, относительно твердый, ковкий, тяжелый и тугоплавкий металл.

Металлический уран — очень реакционноспособный элемент; он легко взаимодействует со всеми металлоидами, а также образует интерметаллические соединения с большинством металлов, включая Fe, Pb и Hg. В ряду напряжения уран находится близко к бериллию и является сильным восстановителем. Со многими элементами уран образует бинарные соединения, важнейшими из которых являются гидриды, карбиды, окислы, нитриды и галогениды. С практической точки зрения реакции урана с кислородом, азотом и водой относятся к наиболее важным. На воздухе металлический уран окисляется даже при комнатной температуре, покрываясь золотисто-желтой пленкой [6, с. 8; 7, с. 10—12; 228, с. 254—255]:

$$3U + 4O_2 = U_3O_8(U^{4+}O_2 \cdot 2U^{6+}O_3).$$

Уран не растворяется в воде и щелочах, но растворяется в кислотах. Кислоты, не обладающие окислительным действием, например серная, фосфорная и плавиковая, реагируют с ураном очень слабо, тогда как азотная кислота растворяет компактный уран с заметной скоростью. Растворение тонкоизмельченного урана в азотной кислоте может сопровождаться взрывом. Металлический уран инертен к действию щелочей. Добавление окислителей, например H_2O_2 , к раствору NaOH приводит к растворению урана и образованию плохо идентифицируемых водорастворимых пероксоуранатов [228, с. 258]. При действии HCl и H_2SO_4 уран переходит в U^{4+} , при действии HNO — в UO_2^{2+} [109, с. 200].

Природный уран представлен тремя радиоактивными изотопами — 238 U, 235 U и 234 U. Наиболее долгоживущим и распространенным является изотоп 238 U (табл. 1.1).

Радиоактивные свойства естественных изотопов урана в значительной степени связаны с их происхождением. Наиболее долгоживущие изотопы урана — ²³⁸U, ²³⁵U образовались в результате первичного нуклеосинтеза вместе с другими тяжелыми нуклидами и получили название «первичных» [221, с. 34]. Их периоды полураспада соизмеримы со временем существования Земли, поэтому они

Таблица 1.1. Радиохимическая характеристика естественных изотопов урана [7, с. 6, табл. 1; 204, с. 378, табл. 306; 221, с. 35—36, табл. 1]

Изотоп урана	Относительное массовое содержание в природном уране, %	Период полураспада, лет	Тип превращения	Энергия излучения, МэВ
²³⁴ U	0,006	2,48×10 ⁵	α	4,763 (74%) 4,716 (26%)
²³⁵ U	0,710	7,13×10 ⁸	α	4,58(10%) 4,47 (~3%) 4,40 (83%) 4,20 (4%)
²³⁸ U	99,28	4,49×10 ⁹	α	4,18

дожили до настоящего времени. 238 U и 235 U обладают достаточно высокой распространенностью. Благодаря этому геохимическое поведение первичных изотопов урана целиком определяется их химическими свойствами [76, с. 6].

Однако следует иметь в виду, что в природных соединениях отношение изотопов урана может меняться (в пределах \pm 0,1% абсолютной величины) [228, с. 187]. Кроме того, получено 11 искусственных изотопов урана с массовыми числами от 227 до 240, важнейшим из которых является 233 U, получаемый как конечный продукт превращений при облучении 232 Th медленными нейтронами [7, с. 7].

Уран обладает переменной валентностью и в водных растворах может присутствовать в виде ионов, соответствующих четырем степеням окисления (от +3 до +6) — U^{3+} , U^{4+} , UO_2^{+} , UO_2^{2+} [7, с. 8]. Известны также его нестехиометрические соединения [228, с. 259]. Соединения трехи пятивалентного урана в водных растворах весьма нестойкие и могут существовать в достаточно специфических условиях, трудно воспроизводимых в природных условиях. Наиболее устойчивой степенью окисления урана является +6 [221, с. 40].

Водные растворы U (III) можно легко получить растворением солей UCl_3 , UBr_3 или восстановлением U (IV) и U (VI); растворы U (III) интенсивно окрашены в винно-красный цвет. Трехвалентный уран в растворе очень

неустойчив и подвергается окислению до U^{4+} даже в отсутствие O_2 . Быстрое окисление U^{3+} затрудняет исследование его свойств в растворах и достоверные данные в этой области отсутствуют. Качественные данные, основанные на измерении рН растворов U^{3+} , указывают на то, что гидролиз U^{3+} протекает примерно так же, как можно было бы ожидать для трехзарядного положительного иона [228, с. 351].

Пятивалентный уран в растворе может быть получен растворением UCl_5 в воде или электролитическим восстановлением U (VI) при pH = 2,5-3,0. В растворе U (V) легко диспропорционирует с образованием урана (IV) и урана (VI) [7, с. 9]:

$$2UO_2^+ + 4H_3O^+ = UO_2^{2+} + U^{4+} + 6H_2O.$$

Установлено, что пятивалентное состояние — наименее устойчивое состояние окисления урана в растворе. Ион ${\rm UO_2}^+$ относительно стабилен только в узком интервале кислотности при pH ~ 2,0—4,0 [228, c. 354].

В настоящее время точно установлено [221, с. 40], что в природных условиях уран существует в двух степенях окисления: +4 и +6. U(IV) по химическим свойствам близок к Th(IV), Y(III) и тяжелым лантаноидам иттриевой группы. С химической точки зрения ион U^{4+} является слабым основанием и присутствует в сильнокислых растворах, а при понижении рН гидролизуется, образуя $U(OH)_4$, слаборастворимый в H_2O , но хорошо растворимый в кислотах. Из соединений U(IV) наиболее растворимы в воде UCl_4 и $U(SO_4)_2$. Вследствие этого U(IV)устойчив в сильнокислых сульфатных, хлоридных и нитратных растворах. Силикаты U^{4+} растворимы в сильнокислых средах. Ион урана (IV) относится к числу комплексообразователей, характеризующихся большой величиной радиуса (r = 1,05E); в этом отношении он близок к Th и Zr. Систематические исследования свойств некоторых ацидокомплексных соединений U(IV) (сульфатных, карбонатных и оксалатных) показывают [7, с. 18; 221, с. 40], что в большинстве случаев уран (IV) проявляет координационное число, равное восьми. В литературе достаточно подробно описаны хлоридные, роданидные, фторидные комплексы U(IV). Большинство из них малоустойчиво, причем устойчивость падает с повышением температуры. В карбонатных растворах уран (IV) образует устойчивый комплекс $U(CO_3)_5^{-6}$. Кроме того, ион урана (IV) образует комплексы с большим числом органических соединений: с оксикислотами (винной, лимонной, гликолевой и др.), пирокатехином, салициловой кислотой, дикетонами, купфероном, а также комплексы с реагентами арсеназо I, II, III [7, с. 18]. В природных водах U^{4+} содержится в практически неопределимых количествах, произведение растворимости в воде $n\cdot 10^{-52}$ [120, с. 67].

В окислительных условиях U переходит в свою высшую степень окисления — U^{6+} . Степень окисления (+6) наиболее характерна для урана. Валентность +6 является высокой даже для такого крупного катиона, как U^{6+} . Уран (VI) энергетически неустойчив и в водных растворах мгновенно гидролизуется с образованием комплексного двухвалентного катиона уранила UO_2^{2+} линейной конфигурации (например, по схеме $UF_6 + 2H_2O = UO_2F_2 + 4HF$) [144, с. 10]. По размерам уранил-ион превышает все известные в природе катионы и равен 2,64·6,84 E [221, с. 41]. В связи с этим ион UO_2^{2+} не может изоморфно замещать другие катионы в химических соединениях и в природе легко образует собственные минералы.

U(VI) проявляет большую склонность к образованию комплексных соединений, которые играют огромную роль в его геохимии. Ион уранила считается несколько нетипичным двухзарядным катионом и его поведение в процессах комплексообразования отличается некоторыми особенностями [7, с. 19; 228, с. 366]. Так, во всех этих соединениях уран находится в форме уранил-иона, который имеет координационные числа 4 и 6. Установлено, что в зависимости от типа аниона и его концентрации уранил образует комплексы анионного или катионного характера. Комплексообразование U(VI) с C1-, Br и NO₃ идет слабо. Наиболее важное значение в природных условиях имеют карбонатные, сульфатные, фторидные, фосфатные и гидрокомплексы. Аква-гидрокомплексы уранила обра-

зуются при ступенчатом замещении аква-групп в аква-ионе уранила $[UO_2(H_2O)_6]^{2^+}$ и имеют форму $[UO_2(OH)_n(H_2O)_{6-n}]^{2-n}$ (п — от 0 до 6). Большинство комплексов уранил-иона с неорганическими соединениями бесцветно и хорошо растворимо в воде. Большая часть этих комплексных соединений обладает хорошей растворимостью в результате слабой химической связи между уранилом и анионами.

Предпочтительной формой миграции урана в экзогенных условиях являются отрицательно заряженные уранил-карбонатные комплексы [63, с. 41; 76, с. 6—7]. Этому способствуют широкая распространенность в природных водах ионов НСО₃ и высокая устойчивость уранил-карбонатных комплексов. Из карбонатных комплексов уранила наиболее устойчивыми считаются два — трикарбонат-уранил $[UO_2(CO_3)_3]^{4-}$ и дикарбонат-уранил $[UO_2(CO_3)_2]^{2-}$. Первый комплекс преобладает в растворе с избытком ионов CO₃²⁻; с уменьшением их содержания в растворе появляется второе комплексное соединение. Следующей ступенью является образование слаборастворимого карбоната уранила UO₂CO₃. Фторидные комплексы образуются лишь в средах с высокими концентрациями фтора [221, с. 42]. Так, для 25 °C пороговая концентрация фтора должна составлять 0,5 мг/л. Сульфатные комплексные соединения уранила по строению подобны карбонатным, однако по прочности уступают не только карбонатным, но и фторидным. Они характерны лишь для кислой среды с рН 2-4. В ряду сульфатов наиболее легко выделяемым в твердом виде и наиболее устойчивым в водном растворе является соединение дисульфатного типа — $UO_2(SO_4)_2^{2-}$.

Наибольшее значение в химии уранил-иона имеют его комплексные соединения с органическими кислотами (пировиноградной, малеиновой, лимонной, и в особенности некоторых гидроксамовых кислот). Ионы лимонной, винной, яблочной и молочной кислот образуют с уранилом устойчивые даже при высоких значениях рН (8—10) комплексные соединения [7, с. 23; 221, с. 41—42]. Важными для аналитической химии являются комплексы уранила с диэтилдитиокарбаматами (и их производными) и ксантогенатами; эти соединения хорошо растворимы в органических растворителях [7, с. 24].

ОГЛАВЛЕНИЕ

Предисловие	3
Глава 1. Уран в почвах и растениях экосистем	7
1.1. Характеристика урана как химического элемента	10
1.2. Содержание урана в земной коре и почвах	16
1.3. Содержание и особенности поступления урана в расте-	
	29
1.4. Роль урана в жизни растений	39
1.5. Коэффициенты биологического поглощения урана	44
Глава 2. Объекты, природные условия района исследования	50
2.1. Природные условия Минской возвышенности	50
2.2. Объекты исследований	58
2.2.1. Характеристика постоянных пробных площадей	58
Глава 3. Содержание природного урана в почвах сосновых биогео- ценозов	64
3.1. Содержание урана в автоморфных дерново-подзолистых слабооподзоленных связнопесчаных почвах	68
3.2. Распределение урана в полугидроморфных перегнойноподзолисто-глеевых легкосуглинистых почвах	77
Глава 4. Аккумуляция природного урана растениями сосновых фи-	
тоценозов	86
4.1. Распределение урана в органах и структурах древесных растений	89
4.2. Накопление урана в растениях подроста	96
4.3. Аккумуляция урана растениями-доминантами живого	70
напочвенного покрова	101

<i>Глава 5.</i> Оценка биологической подвижности природного урана в разных типах сосновых биогеоценозов	108
5.1. Коэффициенты биологического поглощения урана для представителей древесного яруса	110
5.2. Коэффициенты биологического поглощения урана для растений подроста	117
5.3. Коэффициенты биологического поглощения урана для растений-доминантов живого напочвенного покрова	121
Заключение	132 138