

А. М. Меламед

Правила промышленной безопасности опасных производственных объектов, на которых используется оборудование, работающее под избыточным давлением, в вопросах и ответах. Пособие для изучения и подготовки к проверке знаний

Текст предоставлен правообладателем http://www.litres.ru/pages/biblio_book/?art=11788340
Правила промышленной безопасности опасных производственных объектов, на которых используется оборудование, работающее под избыточным давлением, в вопросах и ответах: пособие для изучения и подготовки к проверке знаний / авт.-сост. А. М. Меламед.: ЭНАС; Москва;

ISBN 978-5-4248-0108-2

Аннотация

В пособии рассмотрены основные положения Федеральных норм и правил в области промышленной безопасности «Правила промышленной безопасности опасных производственных объектов, на которых используется оборудование, работающее под избыточным давлением», утвержденных приказом Федеральной службы по экологическому, технологическому и атомному надзору от 25 марта 2014 года № 116, в виде вопросов и ответов.

Пособие поможет специалистам в изучении Правил при приеме на работу и при подготовке к проверке знаний, а также в повседневной практической работе.

Для специалистов предприятий и организаций различных отраслей, форм собственности и ведомственной принадлежности, осуществляющих деятельность на опасных производственных объектах, на которых используется оборудование, работающее под избыточным давлением.

Содержание

I. Общие положения	4
Область применения и назначение	4
Термины и определения	8
II. Требования к установке, размещению и обвязке оборудования под	9
давлением	
Общие требования	9
Установка, размещение и обвязка сосудов	18
Прокладка трубопроводов	20
III. Требования промышленной безопасности к техническому	23
перевооружению ОПО, монтажу, ремонту, реконструкции	
(модернизации) и наладке оборудования под давлением	
Общие требования	23
Требования к монтажу, ремонту и реконструкции	27
(модернизации) оборудования	
Резка и деформирование полуфабрикатов	28
Сварка	29
Контроль качества сварных соединений	34
Визуальный осмотр и измерения	36
Ультразвуковая дефектоскопия и радиографический	37
Капиллярный и магнитопорошковый контроль	38
Контроль стилоскопированием	39
Измерение твердости	40
Гидравлическое (пневматическое) испытание	43
Конец ознакомительного фрагмента	48

Правила промышленной безопасности опасных производственных объектов, на которых используется оборудование, работающее под избыточным давлением, в вопросах и ответах: пособие для изучения и подготовки к проверке знаний Автор-составитель А. М. Меламед

І. Общие положения

Область применения и назначение

Вопрос. Каково назначение Федеральных норм и правил в области промышленной безопасности (ФНП) «Правила промышленной безопасности опасных производственных объектов, на которых используется оборудование, работающее под избыточным давлением» (далее – Правила)?

Ответ. Назначение Правил – обеспечение промышленной безопасности, предупреждение аварий, инцидентов, производственного травматизма на объектах при использовании оборудования, работающего под избыточным давлением более 0,07 МПа:

- а) пара, газа (в газообразном, сжиженном состоянии);
- б) воды при температуре более 115 °C;
- в) иных жидкостей при температуре, превышающей температуру их кипения при избыточном давлении $0.07~\mathrm{M}\Pi a~(2)^1.$

Вопрос. На какие виды оборудования распространяются Правила?

Ответ. Правила предназначены для применения при разработке технологических процессов, техническом перевооружении опасного производственного объекта (далее – ОПО), а также при размещении, монтаже, ремонте, реконструкции (модернизации), наладке и эксплуатации, техническом освидетельствовании, техническом диагностировании и экспертизе промышленной безопасности оборудования, работающего под избыточным давлением (далее – оборудование под давлением), отвечающих одному или нескольким признакам, указанным в подпунктах «а», «б» и «в» пункта 2 настоящих ФНП:

- а) паровых котлов, в том числе котлов-бойлеров, а также автономных пароперегревателей и экономайзеров;
 - б) водогрейных и пароводогрейных котлов;
- в) энерготехнологических котлов: паровых и водогрейных, в том числе содорегенерационных котлов;

¹ Здесь и далее в каждом ответе в скобках указан соответствующий пункт Правил.

- г) котлов-утилизаторов (паровых и водогрейных);
- д) котлов передвижных и транспортабельных установок;
- е) котлов паровых и жидкостных, работающих с высокотемпературными органическими и неорганическими теплоносителями;
 - ж) электрокотлов;
 - з) трубопроводов пара и горячей воды;
- и) трубопроводов технологических для транспортирования газообразных, парообразных и жидких сред;
 - к) сосудов, работающих под избыточным давлением пара, газов, жидкостей;
- л) баллонов, предназначенных для сжатых, сжиженных и растворенных под давлением газов;
 - м) цистерн и бочек для сжатых и сжиженных газов;
- н) цистерн и сосудов для сжатых, сжиженных газов, жидкостей и сыпучих тел, в которых избыточное давление создается периодически для их опорожнения;
 - о) барокамер (3).

Вопрос. В отношении каких видов оборудования под давлением Правила не применяются?

Ответ. Настоящие ФНП не применяются в отношении объектов, на которых используется следующее оборудование под давлением:

- а) котлы, включая электрокотлы, а также автономные пароперегреватели и экономайзеры, трубопроводы пара и горячей воды, сосуды, устанавливаемые на морских и речных судах и других плавучих средствах (кроме драг и плавучих буровых установок) и объектах подводного применения;
 - б) отопительные и паровозные котлы железнодорожного подвижного состава;
- в) котлы объемом парового и водяного пространства $0,001 \text{ м}^3$ и менее, у которых произведение рабочего давления (МПа) на объем (м^3) не превышает 0,002;
 - Γ) электрокотлы вместимостью не более 0,025 M^3 ;
- д) трубчатые печи и пароперегреватели трубчатых печей предприятий нефтеперерабатывающей и нефтехимической промышленности;
- е) сосуды вместимостью не более 0,025 м³ независимо от давления, используемые для научно-экспериментальных целей. При определении вместимости из общего объема сосуда исключают объем, занимаемый футеровкой, трубами и другими внутренними устройствами. Группа сосудов, а также сосуды, состоящие из отдельных корпусов и соединенные между собой трубами внутренним диаметром более 100 мм, рассматривают как один сосуд;
- ж) сосуды и баллоны вместимостью не более $0,025 \text{ м}^3$, у которых произведение значений давления (МПа) на вместимость (м^3) не превышает 0,02;
- з) сосуды, работающие под давлением, создающимся при взрыве внутри них в соответствии с технологическим процессом или горении в режиме самораспространяющегося высокотемпературного синтеза;
 - и) сосуды и трубопроводы, работающие под вакуумом;
 - к) сосуды, устанавливаемые на самолетах и других летательных аппаратах;
- л) воздушные резервуары тормозного оборудования подвижного состава железнодорожного транспорта, автомобилей и других средств передвижения;
- м) оборудование под давлением, входящее в состав вооружения и военной техники, применяемое для обеспечения интересов обороны и безопасности государства, гражданской и территориальной обороны, а также в условиях ликвидации чрезвычайных ситуаций

природного и техногенного характера, за исключением оборудования общепромышленного назначения;

- н) сосуды и трубопроводы атомных энергетических установок, сосуды, работающие с радиоактивной средой, а также теплоэнергетическое оборудование, включая трубопроводы атомных электростанций;
 - о) приборы парового и водяного отопления;
- п) сосуды, состоящие из труб внутренним диаметром не более 150 мм без коллекторов, а также с коллекторами, выполненными из труб внутренним диаметром не более 150 мм;
- р) части машин, не представляющие собой самостоятельных сосудов (корпусы насосов или турбин, цилиндры двигателей паровых, гидравлических, воздушных машин и компрессоров);
- с) трубопроводы пара и горячей воды, устанавливаемые на подвижном составе железнодорожного, автомобильного транспорта;
- т) трубопроводы пара и горячей воды наружным диаметром менее 76 мм, у которых параметры рабочей среды не превышают температуру 450 °C и давление 8 МПа;
- у) трубопроводы пара и горячей воды наружным диаметром менее 51 мм, у которых температура рабочей среды не превышает 450 °C при давлении рабочей среды более 8,0 МПа, а также у которых температура рабочей среды превышает 450 °C без ограничения давления рабочей среды;
- ф) сливные, продувочные и выхлопные трубопроводы котлов, трубопроводов, сосудов, редукционно-охладительных и других устройств, соединенные с атмосферой;
- х) магистральные трубопроводы, внутрипромысловые и местные распределительные трубопроводы, предназначенные для транспортирования газа, нефти и других продуктов;
 - ц) трубопроводы сетей газораспределения и сетей газопотребления;
- ч) оборудование, изготовленное (произведенное) из неметаллической гибкой (эластичной) оболочки (4).

Вопрос. На какие организации распространяются Правила?

Ответ. Требования настоящих ФНП обязательны для исполнения всеми организациями независимо от форм собственности, индивидуальными предпринимателями (далее – организации) и работниками организаций, осуществляющими на территории Российской Федерации деятельность, указанную в пункте 3 настоящих ФНП (5).

Вопрос. Как осуществляется реализация положений Правил?

Ответ. Обеспечение промышленной безопасности, предупреждение аварий, инцидентов, производственного травматизма на объектах, на которых используется оборудование под давлением, осуществляется путем:

- а) соблюдения организациями и их работниками требований промышленной безопасности, установленных федеральными законами Российской Федерации, принимаемыми в соответствии с ними нормативными правовыми актами Президента Российской Федерации и Правительства Российской Федерации;
- б) непосредственного выполнения организациями и их работниками требований настоящих ФНП и Федеральных норм и правил, устанавливающих требования промышленной безопасности к ОПО, имеющих иные признаки, установленные Федеральным законом № 116-ФЗ, не указанные в пункте 2 настоящих ФНП, а также принимаемых в соответствии с ними нормативных правовых актов Ростехнадзора, и нормативных документов организаций, применяемых ими в зависимости от осуществляемого вида деятельности для обеспечения требований промышленной безопасности;

- в) осуществления государственного надзора в области промышленной безопасности Ростехнадзором или иным уполномоченным органом в порядке, установленном в соответствии с законодательством Российской Федерации в области промышленной безопасности;
- г) осуществления лицензионного контроля за лицензируемым видом деятельности в пределах компетенции Ростехнадзора (6).

Осуществление на территории Российской Федерации деятельности, указанной в пункте 3 настоящих ФНП, предусматривающей использование оборудования, работающего под избыточным давлением, в том числе иностранного производства, должно соответствовать требованиям настоящих ФНП (7).

При осуществлении деятельности, указанной в пункте 3 настоящих ФНП, должны выполняться также требования законодательства Российской Федерации в области пожарной безопасности (далее – нормы пожарной безопасности), охраны окружающей среды, экологической безопасности, электробезопасности и охраны труда (8).

Термины и определения

Вопрос. Какие термины и определения используются в Правилах?

От совета Евразийской экономической комиссии от 2 июля 2013 года № 41.

Кроме того, для целей настоящих Φ НП дополнительно использованы термины и их определения, указанные в приложении № 1 к настоящим Φ НП (9).

II. Требования к установке, размещению и обвязке оборудования под давлением

Общие требования

Вопрос. Как осуществляется установка, размещение и обвязка оборудования под давлением?

Ответ. Установка, размещение и обвязка оборудования под давлением на объектах, для применения на которых оно предназначено, должны осуществляться на основании проектной документации, разработанной специализированными проектными организациями с учетом требований законодательства в области промышленной безопасности и законодательства о градостроительной деятельности. Отклонения от проектной документации не допускаются (10).

Установка, размещение, обвязка котлов и сосудов, прокладка трубопроводов пара и горячей воды, технологических трубопроводов должны обеспечить безопасность их обслуживания, осмотра, ремонта, промывки и очистки.

Арматура должна быть установлена в местах, удобных для управления, обслуживания и ремонта (11).

Вопрос. Какие требования предъявляются к площадкам и лестницам для обслуживания оборудования под давлением?

Ответ. Для удобства и безопасности обслуживания, осмотра, ремонта оборудования под давлением проектом должно быть предусмотрено устройство стационарных металлических площадок и лестниц. Для ремонта и технического обслуживания оборудования в местах, не требующих постоянного обслуживания, в случаях, предусмотренных проектной документацией, руководствами (инструкциями) по эксплуатации и производственными инструкциями, допускается применение передвижных, приставных площадок и лестниц, строительных лесов.

Установленные в настоящих ФНП требования к площадкам и лестницам для обслуживания оборудования не распространяются на лестницы, площадки и проходы, входящие в состав строительных конструкций зданий, устройство которых должно соответствовать требованиям законодательства по градостроительной деятельности, технических регламентов и нормам пожарной безопасности (12).

Площадки и лестницы для обслуживания, осмотра, ремонта оборудования под давлением должны быть выполнены с перилами высотой не менее 0,9 м со сплошной обшивкой по низу на высоту не менее 100 мм.

Переходные площадки и лестницы должны иметь перила с обеих сторон. Площадки при расстоянии от тупикового конца до лестницы (выхода) более 5 м должны иметь не менее двух лестниц (двух выходов), расположенных в противоположных концах.

Применение гладких площадок и ступеней лестниц, а также выполнение их из прутковой (круглой) стали запрещается (13).

Лестницы должны иметь ширину не менее 600 мм, высоту между ступенями не более 200 мм, ширину ступеней не менее 80 мм. Лестницы большой высоты должны иметь промежуточные площадки. Расстояние между площадками должно быть не более 4 м.

Лестницы высотой более 1,5 м должны иметь угол наклона к горизонтали не более 50° (14).

Ширина свободного прохода площадок должна быть не менее 600 мм, а для обслуживания арматуры, контрольно-измерительных приборов и другого оборудования — не менее 800 мм.

Свободная высота над полом площадок и ступенями лестниц должна быть не менее 2 м (15).

Установка, размещение, обвязка котлов и вспомогательного оборудования котельной установки

Вопрос. Какие требования предъявляются к установке и размещению котлов?

Ответ. Стационарные котлы устанавливаются в зданиях и помещениях, конструкция которых должна соответствовать требованиям проекта, технических регламентов и законодательства Российской Федерации о градостроительной деятельности, а также обеспечивать безопасную эксплуатацию котлов согласно требованиям законодательства Российской Федерации в области промышленной безопасности и настоящих ФНП.

Установка котлов вне помещения допускается в том случае, если проектом котла предусмотрена возможность работы на открытом воздухе в заданных климатических условиях (16).

Устройство помещений и чердачных перекрытий над котлами не допускается. Данное требование не распространяется на котлы, для которых проектом и настоящими ФНП допускается установка внутри производственных помещений (17).

Вопрос. Какие типы котлов допускается устанавливать внутри производственных помещений?

Ответ. Внутри производственных помещений допускается установка:

- а) прямоточных котлов паропроизводительностью каждого не более 4 тонн пара в час $({\scriptsize {\rm T/\Psi}});$
- б) котлов, удовлетворяющих условию (t 100) V < 100 (для каждого котла), где t температура насыщенного пара при рабочем давлении, °C; V водяной объем котла, м³;
- в) водогрейных котлов теплопроизводительностью каждого не более $10.5 \, \Gamma Дж/ч \, (2.5 \, \Gamma кал/ч)$, не имеющих барабанов;
 - г) водогрейных электрокотлов при электрической мощности каждого не более 2,5 МВт;
 - д) котлов-утилизаторов без ограничений (18).

Вопрос. Какие требования предъявляются к котельным помещениям?

Ответ. Двери для выхода из помещения, в котором установлены котлы, должны открываться наружу. Двери служебных, бытовых, а также вспомогательно-производственных помещений в котельную должны открываться в сторону котельной (19).

Место установки котлов внутри производственных помещений должно быть отделено от остальной части помещения несгораемыми перегородками по всей высоте котла, но не ниже 2 м с устройством дверей. Места расположения выходов и направление открывания дверей определяет проектная организация.

Котлы-утилизаторы могут быть отделены от остальной части производственного помещения вместе с печами или агрегатами, с которыми они связаны технологическим процессом (20).

В зданиях котельных и помещениях, где установлены котлы, не разрешается размещать бытовые и служебные помещения, которые не предназначены для персонала, обслуживающего котлы, а также мастерские, не предназначенные для ремонта котельного оборудования (22).

Площадка для установки котла не должна быть ниже планировочной отметки территории, прилегающей к зданию котельной.

Устройство приямков в котельных не допускается. В отдельных случаях, обоснованных технологической необходимостью, по решению организации-разработчика проектной документации для размещения оборудования дробеочистки, узлов ввода и вывода теплотрасс, сепараторов, расширителей могут устраиваться приямки (23).

Вопрос. Какие меры безопасности должны быть предусмотрены в котельных с электрокотлами?

Ответ. Этажность котельной с электрокотлами, ее планировка и компоновка оборудования должны обеспечивать защиту обслуживающего персонала от соприкосновения с элементами электрокотла, находящимися под напряжением.

В качестве защитных устройств для электрокотлов с изолированным корпусом предусматриваются несгораемые перегородки (ограждения) — сетчатые с размером ячейки не более 25х25 мм или сплошные с остекленными проемами, позволяющими наблюдать за работой котлов. Применяемые перегородки (ограждения) должны иметь высоту не менее 2 м и оборудоваться дверями для прохода персонала.

Вход за перегородку (ограждение) должен иметь блокировку, запрещающую открывание двери при включенном котле и включение котла при открытой двери ограждения. При неисправной блокировке или открывании двери котел должен автоматически отключаться от питающей электросети (21).

Вопрос. Какие требования предъявляются к освещению котельных помещений?

Ответ. Помещения, в которых размещены котлы, должны быть обеспечены достаточным естественным светом, а в ночное время – электрическим освещением.

Места, которые по техническим причинам нельзя обеспечивать естественным светом, должны иметь электрическое освещение. Освещенность должна соответствовать установленным санитарным нормам (24).

Помимо рабочего освещения проектом должно быть предусмотрено аварийное электрическое освещение.

Обязательному оборудованию аварийным освещением подлежат следующие места:

- а) фронт котлов, а также проходы между котлами, сзади котлов и над котлами;
- б) щиты и пульты управления;
- в) водоуказательные и измерительные приборы;
- г) зольные помещения;
- д) вентиляторные площадки;
- е) дымососные площадки;
- ж) помещения для баков и деаэраторов;
- з) оборудование водоподготовки;
- и) площадки и лестницы котлов;
- к) насосные помещения (25).

Вопрос. Какие требования предъявляются к размещению котлов, к ширине и высоте проходов в котельных помещениях?

Ответ. Расстояние от фронта котлов или выступающих частей топок до противоположной стены котельного помещения должно составлять не менее 3 м, при этом для котлов, работающих на газообразном или жидком топливе, расстояние от выступающих частей горелочных устройств до стены котельного помещения должно быть не менее 1 м, а для

котлов, оборудованных механизированными топками, расстояние от выступающих частей топок должно быть не менее 2 м.

Для котлов паропроизводительностью не более 2,5 т/ч минимальное расстояние от фронта котлов или выступающих частей топок до стены котельного помещения может быть сокращено до 2 м в следующих случаях:

- а) если топка с ручной загрузкой твердого топлива обслуживается с фронта и имеет длину не более 1 м;
 - б) при отсутствии необходимости обслуживания топки с фронта;
- в) если котлы работают на газообразном или жидком топливе (при сохранении расстояния от горелочных устройств до стены котельного помещения не менее 1 м).

Расстояние от фронта электрокотлов до противоположной стены котельной должно составлять не менее 2 м. Для котлов электрической мощностью не более 1 МВт это расстояние может быть уменьшено до 1 м (26).

Расстояние между фронтом котлов и выступающими частями топок, расположенных друг против друга, должно составлять:

- а) для котлов, оборудованных механизированными топками, не менее 4 м;
- б) для котлов, работающих на газообразном или жидком топливе, не менее 4 м, при этом расстояние между горелочными устройствами должно быть не менее 2 м;
 - в) для котлов с ручной загрузкой твердого топлива не менее 5 м.

Расстояние между фронтом электрокотлов, расположенных друг против друга, должно быть не менее 3 м (27).

При установке котельного вспомогательного оборудования и щитов управления перед фронтом котлов должна быть обеспечена ширина свободных проходов вдоль фронта не менее 1,5 м, и установленное оборудование не должно мешать обслуживанию котлов (28).

При установке котлов, для которых требуется боковое обслуживание топки или котла (шуровка, обдувка, очистка газоходов, барабанов и коллекторов, выемка пакетов экономайзера, пароперегревателя, и труб, обслуживание горелочных устройств, реперов, элементов топки, периодической продувки), ширина бокового прохода должна быть достаточной для обслуживания и ремонта, но не менее:

- а) 1,5 м для котлов паропроизводительностью менее 4 т/ч;
- б) 2 м для котлов паропроизводительностью 4 т/ч и более (29).

В тех случаях, когда не требуется бокового обслуживания топок и котлов, обязательно устройство проходов между крайними котлами и стенами котельного помещения. Ширина этих проходов, а также ширина прохода между котлами и задней стеной котельного помещения должна составлять не менее 1 м.

Ширина бокового прохода, а также прохода между электрокотлами и задней стенкой котельного помещения должна составлять не менее 1 м.

В случаях, предусмотренных проектом и руководством (инструкцией) по эксплуатации, допускается установка электрокотлов непосредственно у стены котельного помещения, если это не препятствует их обслуживанию при эксплуатации и ремонте.

Ширина прохода между отдельными выступающими из обмуровки частями котлов (каркасами, трубами, сепараторами), а также между этими частями и выступающими частями здания (кронштейнами, колоннами, лестницами, рабочими площадками) должна составлять не менее 0,7 м (30).

Проходы в котельном помещении должны иметь свободную высоту не менее 2 м. Расстояние от площадок, с которых производят обслуживание котла, его арматуры, контрольно-измерительных приборов и другого оборудования, до потолочного перекрытия или выступающих конструктивных элементов здания (помещения), элементов котла и металло-конструкций его каркаса должно быть не менее 2 м.

При отсутствии необходимости перехода через котел, а также через барабан, сухопарник или экономайзер расстояние от них до нижних конструктивных частей покрытия котельного помещения должно быть не менее 0,7 м (31).

Для котлов с электродной группой, смонтированной на съемной крышке, расстояние по вертикали от верхней части котла до нижних конструктивных элементов перекрытия должно быть достаточным для извлечения электродной группы из корпуса котла.

Расстояние между котлами или между стенками электрокотельной должно быть достаточным для извлечения съемного блока электронагревательных элементов (32).

Вопрос. Как осуществляется размещение котлов совместно с другим производственным оборудованием?

Ответ. Запрещается установка в одном помещении с котлами и экономайзерами оборудования, не имеющего прямого отношения к обслуживанию и ремонту котлов или к технологии получения пара и (или) горячей воды (за исключением предусмотренных настоящими ФНП случаев установки котлов в производственных помещениях).

Котлы электростанций могут быть установлены в общем помещении с турбоагрегатами или в смежных помещениях без сооружения разделительных стен между котельным и машинным залом (33).

Размещение котлов и вспомогательного оборудования в блок-контейнерах, передвижных и транспортабельных установках должно осуществляться в соответствии с проектом (34).

Вопрос. Какие требования предъявляются к расположению площадок для обслуживания котлов?

Ответ. Расстояние по вертикали от площадки для обслуживания водоуказательных приборов до середины водоуказательного стекла (шкалы) должно быть не менее 1 м и не более

1,5 м. При диаметрах барабанов меньше 1,2 м и больше 2 м указанное расстояние следует принимать в пределах от 0,6 до 1,8 м (35).

В тех случаях, когда расстояние от нулевой отметки котельного помещения до верхней площадки котлов превышает 20 м, должны быть установлены подъемные устройства для подъема людей и грузов грузоподъемностью не менее 1000 кг. Количество, тип и места установки подъемных устройств должны быть определены проектом (36).

Вопрос. Какие системы трубопроводов должны быть предусмотрены для безопасной эксплуатации котлов?

Ответ. Для безопасной эксплуатации котлов проектом их размещения должны быть предусмотрены системы трубопроводов:

- а) подвода питательной или сетевой воды;
- б) продувки котла и спуска воды при остановке котла;
- в) удаления воздуха из котла при заполнении его водой и растопке;
- г) продувки пароперегревателя и паропровода;
- д) отбора проб воды и пара;
- е) ввода в котловую воду корректирующих реагентов в период эксплуатации и моющих реагентов при химической очистке котла;
 - ж) отвода воды или пара при растопке и остановке;
 - з) разогрева барабанов при растопке (если это предусмотрено проектом котла);
 - и) отвода рабочей среды от предохранительных клапанов при их срабатывании;
 - к) подвода топлива к горелочным устройствам котла (37).

Вопрос. Какие требования предъявляются к устройству котельных трубопроводов?

Ответ. Количество и точки присоединения к элементам котла продувочных, спускных, дренажных и воздушных трубопроводов должны быть выбраны таким образом, чтобы обеспечить удаление воды, конденсата и осадков из самых нижних и воздуха из верхних частей котла. В тех случаях, когда удаление рабочей среды не может быть обеспечено за счет самотека, следует предусмотреть принудительное ее удаление продувкой паром, сжатым воздухом, азотом или другими способами, предусмотренными руководством (инструкцией) по эксплуатации (38).

Продувочный трубопровод должен отводить воду:

- а) в емкость, работающую без давления;
- б) в емкость, работающую под давлением, при условии подтверждения надежности и эффективности продувки соответствующими расчетами (39).

Bonpoc. Какие требования предъявляются к запорным органам и предохранительным клапанам котлов?

Ответ. На всех участках паропровода, которые могут быть отключены запорными органами, в нижних точках должны быть устроены дренажи, обеспечивающие отвод конденсата (40).

Конструктивные и компоновочные решения систем продувок, опорожнения, дренажа, ввода реагента должны обеспечить надежность эксплуатации котла на всех режимах, включая аварийные, а также надежную его консервацию при простоях (41).

Предохранительные клапаны должны иметь отводящие трубопроводы для обеспечения безопасности обслуживающего персонала. Эти трубопроводы должны быть защищены от замерзания и оборудованы дренажами для слива скапливающегося в них конденсата. Установка запорных устройств на дренажах не допускается (42).

Водоотводящая труба от предохранительных клапанов водогрейного котла, экономайзера должна быть присоединена к линии свободного слива воды, причем как на ней, так и на сливной линии не должно быть никаких запорных органов. Устройство системы водоотводящих труб и линий свободного слива должно исключить возможность ожога людей.

Для спуска воды при продувке водоуказательных приборов должны быть предусмотрены воронки с защитным приспособлением и отводной трубой для свободного слива (43).

На питательном трубопроводе котла должны быть установлены обратный клапан, предотвращающий выход воды из котла, и запорный орган. Обратный клапан и запорный орган должны быть установлены до неотключаемого по воде экономайзера. У экономайзера, отключаемого по воде, обратный клапан и запорный орган следует устанавливать также и после экономайзера (44).

На входе воды в водогрейный котел и на выходе воды из котла следует устанавливать по запорному органу (45).

На каждом продувочном, дренажном трубопроводе, а также на трубопроводе отбора проб воды (пара) котлов с рабочим давлением более 0,8 МПа должно быть установлено не менее двух запорных органов либо один запорный орган и один регулирующий орган.

На этих же трубопроводах котлов с давлением более 10 МПа кроме указанной арматуры допускается установка дроссельных шайб. В случаях, предусмотренных руководством (инструкцией) по эксплуатации, допускается для продувки камер пароперегревателей установка одного запорного органа. Условный проход продувочных трубопроводов и установленной на них арматуры должен быть не менее:

- а) 20 мм для котлов с давлением до 14 МПа;
- б) 10 мм для котлов с давлением 14 МПа и более (46).

При отводе среды от котла в сборный бак (сепаратор, расширитель) с меньшим давлением, чем в котле, сборный бак должен быть защищен от превышения давления выше расчетного. Способ защиты, а также количество и место установки арматуры, контрольно-измерительных приборов, предохранительных устройств определяют проектом (47).

Главные парозапорные органы паровых котлов производительностью более 4 т/ч должны быть оборудованы дистанционным приводом с выводом управления на рабочее место обслуживающего котел персонала (48).

Вопрос. Какие требования предъявляются к оборудованию питательных линий котлов?

Ответ. На питательных линиях каждого котла должна быть установлена регулирующая арматура.

При автоматическом регулировании питания котла должен быть предусмотрен дистанционный привод для управления регулирующей питательной арматурой с рабочего места обслуживающего котел персонала (49).

На питательных линиях котлов паропроизводительностью 2,5 т/ч и менее регулирующая арматура не устанавливается при условии, если проектом котла предусмотрено автоматическое регулирование уровня воды включением и выключением насоса (50).

При установке нескольких питательных насосов, имеющих общие всасывающие и нагнетательные трубопроводы, у каждого насоса на стороне всасывания и на стороне нагнетания должны быть установлены запорные органы. На стороне нагнетания каждого центробежного насоса до запорного органа должен быть установлен обратный клапан (51).

Питание котлов осуществляется либо из общего для подключенных котлов питательного трубопровода (групповое питание), либо из питательного трубопровода только для одного котла (индивидуальное питание).

Включение котлов в одну группу по питанию допускается только при условии, что разница рабочих давлений в разных котлах не превышает 15 %.

Питательные насосы, присоединяемые к общей магистрали (групповое питание), должны иметь характеристики, допускающие параллельную работу насосов (52).

Вопрос. Какие типы насосов применяются для питания котлов?

Ответ. Для питания котлов водой применяются:

- а) центробежные и поршневые насосы с электрическим приводом;
- б) центробежные и поршневые насосы с паровым приводом;
- в) паровые инжекторы;
- г) насосы с ручным приводом;
- д) водопроводная сеть при условии, что минимальное давление воды в водопроводной сети перед регулирующим органом питания котла превышает расчетное или разрешенное давление в котле не менее чем на $0.15~\rm M\Pi a$.

Пароструйный инжектор приравнивается к насосу с паровым приводом (53).

Вопрос. Какие требования предъявляются к питательным насосам?

Ответ. В котельных с водогрейными котлами должно быть установлено не менее двух взаимозаменяемых циркуляционных сетевых насосов. Напор и подачу насосов выбирают с таким расчетом, чтобы при выходе из строя одного из насосов была обеспечена бесперебойная работа системы теплоснабжения.

Допускается работа котлов паропроизводительностью не более 2 т/ч с одним питательным насосом с электроприводом, если котлы снабжены автоматикой безопасности, исклю-

чающей возможность понижения уровня воды и повышения давления сверх допустимого значения (54).

Напор, создаваемый насосом, должен обеспечивать питание котла водой при рабочем давлении за котлом с учетом гидростатической высоты и потерь давления в тракте котла, регулирующем устройстве и в тракте питательной воды.

Характеристика насоса должна также обеспечивать отсутствие перерывов в питании котла при срабатывании предохранительных клапанов с учетом наибольшего повышения давления при их полном открывании.

При групповом питании котлов напор насоса должен выбираться с учетом указанных выше требований, а также исходя из условия обеспечения питания котла с наибольшим рабочим давлением или с наибольшей потерей напора в питательном трубопроводе (55).

Подача питательных устройств должна определяться по номинальной паропроизводительности котлов с учетом расхода воды на непрерывную или периодическую продувку, пароохлаждение, редукционно-охладительные и охладительные устройства, потери воды или пара (56).

Напор и расход воды, создаваемый циркуляционными и подпиточными насосами, должны исключать возможность вскипания воды в водогрейном котле и системе теплоснабжения. Минимальный напор и расход воды устанавливают проектом (57).

Тип, характеристику, количество и схему включения питательных устройств определяют в целях обеспечения надежной и безопасной эксплуатации котла на всех режимах, включая аварийные остановки (58).

На питательном трубопроводе между запорным органом и поршневым насосом, у которого нет предохранительного клапана и создаваемый напор превышает расчетное давление трубопровода, должен быть установлен предохранительный клапан (59).

Вопрос. Как осуществляется установка и подключение экономайзеров?

Ответ. Установка и подключение экономайзеров к котлам, а также оснащение их контрольно-измерительными приборами, запорной и регулирующей арматурой, предохранительными устройствами должны осуществляться в соответствии с требованиями проектной документации и руководств (инструкций) по эксплуатации с учетом рекомендованных в них схем включения экономайзеров. При этом принятые проектом решения по выбору экономайзера и схеме его включения должны обеспечивать возможность эксплуатации с параметрами рабочей среды (давление, температура) не более установленных расчетом на прочность и указанных изготовителем в паспорте (60).

Вопрос. Какие требования предъявляются к котлам, работающим на твердом топливе? *Ответ*. Для котлов паропроизводительностью 2,5 т/ч и выше, работающих на твердом топливе, должна быть обеспечена механизированная подача топлива в котельную и топку котла. При общем выходе шлака и золы от всех котлов в количестве 150 кг/ч и более (независимо от производительности котлов) должно быть механизировано удаление золы и шлака.

При ручном золоудалении шлаковые и золовые бункеры должны быть снабжены устройствами для заливки водой золы и шлака в бункерах или вагонетках. В последнем случае под бункером устраиваются изолированные камеры для установки вагонеток перед спуском в них золы и шлака. Камеры должны иметь плотно закрывающиеся двери с застекленными гляделками и оборудоваться вентиляцией и освещением. Управление затвором бункера и заливкой шлака должно быть вынесено за пределы камеры в безопасное для обслуживания место. На всем пути передвижения вагонетки высота свободного прохода должна быть не менее 2 м, а боковые зазоры – не менее 0,7 м.

Если зола и шлак удаляются из топки непосредственно на рабочую площадку, то в котельной над местом удаления и заливки очаговых остатков должна быть устроена вытяжная вентиляция.

При шахтных топках с ручной загрузкой для древесного топлива или торфа должны быть устроены загрузочные бункеры с крышкой и откидным дном (61).

Вопрос. Какими мерами обеспечивается взрыво— и пожаробезопасность при работе котлов?

Ответ. Для обеспечения взрыво— и пожаробезопасности при работе котлов подвод топлива к горелкам, требования к запорной, регулирующей и отсечной (предохранительной) арматуре, перечень необходимых защит и блокировок, а также требования к приготовлению и подаче топлива определяются для каждого вида топлива требованиями проектной документации, руководства (инструкции) по эксплуатации котла и нормами пожарной безопасности (62).

На предохранительных взрывных клапанах, установленных (в случаях предусмотренных проектом) на топках котлов, экономайзерах и газоходах, отводящих продукты сгорания топлива от котлов к дымовой трубе, должны быть предусмотрены защитные сбросные устройства (кожухи, патрубки), обеспечивающие сброс избыточного давления (отвод среды) при взрывах, хлопках в топке котла и газоходах в безопасное для персонала направление. Конструкция сбросного устройства должна обеспечивать возможность контроля состояния и герметичности (плотности) взрывного клапана в процессе его эксплуатации (63).

Установка, размещение и обвязка сосудов

Вопрос. Как осуществляется установка и размещение сосудов?

Ответ. Сосуды должны быть установлены на открытых площадках в местах, исключающих скопление людей, или в отдельно стоящих зданиях.

Воздухосборники или газосборники должны быть установлены на фундамент вне здания питающего источника. Место их установки должно иметь ограждение.

Расстояние между воздухосборниками должно быть не менее 1,5 м, а между воздухосборником и стеной здания — не менее 1 м. Расстояние между газосборниками определяет проектная организация.

Ограждение воздухосборника должно находиться на расстоянии не менее 2 м от воздухосборника в сторону проезда или прохода.

При установке сосудов с взрывопожароопасными средами на производственных площадках организаций, а также на объектах, расположенных (в обоснованных случаях) на территории населенных пунктов (автомобильные газозаправочные станции), должно быть обеспечено соблюдение безопасных расстояний размещения сосудов от зданий и сооружений, установленных проектом с учетом радиуса опасной зоны в случае аварийной разгерметизации сосуда и требований норм пожарной безопасности (64).

Допускается установка сосудов:

- а) в помещениях, примыкающих к производственным зданиям, при условии отделения их капитальной стеной, конструктивная прочность которой определена проектной документацией с учетом максимально возможной нагрузки, которая может возникнуть при разрушении (аварии) сосудов;
- б) в производственных помещениях, включая помещения котельных и тепловых электростанций, в случаях, предусмотренных проектом с учетом норм проектирования данных объектов в отношении сосудов, для которых по условиям технологического процесса или условиями эксплуатации невозможна их установка вне производственных помещений;
- в) с заглублением в грунт при условии обеспечения доступа к арматуре и защиты стенок сосуда от коррозии (65).

Не разрешается установка в жилых, общественных и бытовых зданиях, а также в примыкающих к ним помещениях, сосудов, подлежащих учету в территориальных органах Ростехнадзора — согласно пункту 214 настоящих ФНП (66).

Установка сосудов должна исключать возможность их опрокидывания (67).

Вопрос. Какие требования предъявляются к запорной и запорно-регулирующей арматуре сосудов?

Ответ. Запорная и запорно-регулирующая арматура должна быть установлена на штуцерах, непосредственно присоединенных к сосуду, или на трубопроводах, подводящих к сосуду и отводящих из него рабочую среду. При последовательном соединении нескольких сосудов установку арматуры между ними осуществляют в случаях, определенных проектной документацией.

Количество, тип применяемой арматуры и места ее установки должны соответствовать проектной документации сосуда, исходя из конкретных условий эксплуатации.

На линии подвода рабочей среды, отнесенной к группе 1 в соответствии с ТР ТС 032/2013, к сосудам, а также на линии подвода рабочей среды к испарителям с огневым или газовым обогревом должен быть установлен обратный клапан, автоматически закрывающийся давлением из сосуда. Обратный клапан должен устанавливаться между насосом

(компрессором) и запорной арматурой сосуда. Действие настоящего пункта не распространяется на сосуды со сжиженным природным газом (68).

Прокладка трубопроводов

Вопрос. Как осуществляется прокладка технологических трубопроводов?

Ответ. Прокладку технологических трубопроводов, а также их оснащение арматурой, устройствами для дренажа и продувки осуществляют на основании проекта (69).

Горизонтальные участки трубопровода пара и горячей воды должны иметь уклон не менее 0,004; для трубопроводов тепловых сетей уклон должен быть не менее 0,002.

Трассировка трубопроводов должна исключать возможность образования водяных застойных участков (70).

При прокладке трубопроводов пара и горячей воды в полупроходных каналах высота каналов в свету должна быть не менее 1,5 м, ширина прохода между изолированными трубопроводами — не менее 0,6 м.

Прокладку трубопроводов тепловых сетей под автомобильными дорогами выполняют в железобетонных непроходных, полупроходных или проходных каналах. С одной стороны предусматривается тепловая камера, а с другой — монтажный канал длиной 10 м с люками, количество которых должно быть не менее 4 шт. (71).

При прокладке трубопроводов пара и горячей воды в проходных тоннелях (коллекторах) высота тоннеля (коллектора) в свету должна быть не менее 2 м, а ширина прохода между изолированными трубопроводами — не менее 0.7 м.

В местах расположения запорной арматуры (оборудования) ширина тоннеля должна быть достаточной для удобного обслуживания установленной арматуры (оборудования). При прокладке в тоннелях нескольких трубопроводов их взаимное размещение должно обеспечивать удобное проведение ремонта трубопроводов и замены отдельных их частей (72).

На тепловых сетях в местах установки электрооборудования (насосные, тепловые пункты, тоннели, камеры), а также в местах установки арматуры с электроприводом, регуляторов и контрольно-измерительных приборов предусматривается электрическое освещение (73).

При надземной открытой прокладке трубопроводов пара и горячей воды допускается их совместная прокладка с технологическими трубопроводами различного назначения, за исключением случаев, когда такая прокладка противоречит нормам пожарной безопасности и федеральным нормам и правилам, устанавливающим требования промышленной безопасности к ОПО, на котором осуществляется указанная прокладка трубопроводов (74).

Подземные трубопроводы должны быть защищены от коррозии. Тип и способы защиты определяют проектной документацией в зависимости от конструктивного исполнения (76).

Подземная прокладка трубопроводов пара и горячей воды, у которых параметры рабочей среды превышают: температуру $450\,^{\circ}$ C, давление $8\,$ МПа, в одном канале совместно с другими технологическими трубопроводами не допускается (78).

Вопрос. Какие требования предъявляются к оборудованию проходных каналов трубопроводов?

Ответ. Проходные каналы для трубопроводов пара и горячей воды должны иметь входные люки с лестницей или скобами. Расстояние между люками должно быть не более 300 м, а в случае совместной прокладки с другими трубопроводами — не более 50 м. Входные люки должны предусматриваться также во всех конечных точках тупиковых участков, на поворотах трассы и в узлах установки арматуры. Проходные каналы тепловых сетей оборудуют приточно-вытяжной вентиляцией в соответствии с проектной документацией (75).

Камеры для обслуживания подземных трубопроводов пара и горячей воды должны иметь не менее двух люков с лестницами или скобами. При проходе трубопроводов через стенку камеры должна быть исключена возможность подтопления камеры (77).

Вопрос. Какие требования предъявляются к арматуре трубопроводов?

Ответ. Арматура трубопроводов пара и горячей воды должна быть установлена в местах, доступных для удобного и безопасного ее обслуживания и ремонта. В необходимых случаях должны быть устроены стационарные лестницы и площадки в соответствии с проектной документацией. Допускается применение передвижных площадок и приставных лестниц для редко используемой (реже одного раза в месяц) арматуры, доступ к управлению которой необходим при отключении участка трубопровода в ремонт и подключении его после ремонта. Не допускается использование приставных лестниц для ремонта арматуры с ее разборкой и демонтажом.

Устанавливаемая чугунная арматура трубопроводов пара и горячей воды должна быть защищена от напряжений изгиба (79).

Применять запорную арматуру в качестве регулирующей не допускается (80).

В проекте паропроводов внутренним диаметром 150 мм и более и температурой пара 300 °С и выше должны быть указаны места установки указателей перемещений и расчетные значения перемещений по ним. К указателям перемещений должен быть предусмотрен свободный доступ (81).

Установка запорной арматуры на тепловых сетях предусматривается:

- а) на всех трубопроводах выводов тепловых сетей от источников теплоты независимо от параметров теплоносителей;
- б) на трубопроводах водяных сетей условным диаметром 100 мм и более на расстоянии не более 1000 м (секционирующие задвижки) с устройством перемычки между подающим и обратным трубопроводами;
- в) в водяных и паровых тепловых сетях в узлах на трубопроводах ответвлений условным диаметром более 100 мм, а также в узлах на трубопроводах ответвлений к отдельным зданиям независимо от диаметра трубопровода;
 - г) на конденсатопроводах на вводе к сборному баку конденсата (82).

Задвижки и затворы диаметром 500 мм и более оборудуют электроприводом. При надземной прокладке тепловых сетей задвижки с электроприводами устанавливают в помещении или заключают в кожухи, защищающие арматуру и электропривод от атмосферных осадков и исключающие доступ к ним посторонних лиц (83).

Вопрос. Какие требования предъявляются к дренажным устройствам трубопроводов? *Ответ*. Все трубопроводы независимо от транспортируемого продукта должны иметь дренажи для слива воды после гидравлического испытания и воздушники в верхних точках трубопроводов для удаления газа. Места расположения и конструкция воздушных и дренажных устройств трубопроводов устанавливаются проектной документацией (84).

Технологические трубопроводы, в которых возможна конденсация продукта, должны иметь дренажные устройства для непрерывного удаления жидкости.

Непрерывный отвод конденсата обязателен для паропроводов насыщенного пара и для тупиковых участков паропроводов перегретого пара.

Для паровых тепловых сетей непрерывный отвод конденсата в нижних точках трассы обязателен независимо от состояния пара.

Конструкция, тип и места установки дренажных устройств определяют проектом (85).

В нижних точках трубопроводов водяных тепловых сетей и конденсатопроводов, а также секционируемых участков монтируют штуцера с запорной арматурой для спуска воды – спускные устройства (86).

Из паропроводов тепловых сетей в нижних точках и перед вертикальными подъемами должен быть осуществлен непрерывный отвод конденсата через конденсатоотводчики.

В этих же местах, а также на прямых участках паропроводов через 400–500 м при попутном и через 200–300 м при встречном уклоне монтируют устройство пускового дренажа паропроводов (87).

Для спуска воды из трубопроводов водяных тепловых сетей предусматривают сбросные колодцы, расположенные отдельно от канала трубопровода, с отводом воды в системы канализации (88).

Все участки паропроводов, которые могут быть отключены запорными органами, для возможности их прогрева и продувки, должны быть снабжены в концевых точках штуцером с вентилем, а при давлении свыше 2,2 МПа — штуцером и двумя последовательно расположенными вентилями: запорным и регулирующим. Паропроводы на давление 20 МПа и выше должны быть обеспечены штуцерами с последовательно расположенными запорным и регулирующим вентилями и дроссельной шайбой. В случаях прогрева участка паропровода в обоих направлениях продувка должна быть предусмотрена с обоих концов участка.

Устройство дренажей должно предусматривать возможность контроля за их работой во время прогрева трубопровода (89).

Нижние концевые точки паропроводов и нижние точки их изгибов должны быть снабжены устройством для продувки (90).

На водяных тепловых сетях диаметром 500 мм и более при давлении 1,6 МПа и более, диаметром 300 мм и более при давлении 2,5 МПа и более, на паровых сетях диаметром 200 мм и более при давлении 1,6 МПа и более у задвижек и затворов предусматриваются обводные трубопроводы (байпасы) с запорной арматурой (91).

III. Требования промышленной безопасности к техническому перевооружению ОПО, монтажу, ремонту, реконструкции (модернизации) и наладке оборудования под давлением

Общие требования

Вопрос. Какие организации могут выполнять монтаж, ремонт и наладку оборудования под давлением?

Ответ. Техническое перевооружение ОПО, монтаж (демонтаж), ремонт, реконструкцию (модернизацию), наладку оборудования под давлением должны осуществлять специализированные организации, имеющие статус юридического лица и организационную форму, соответствующую требованиям законодательства Российской Федерации, а также индивидуальные предприниматели; далее — специализированные организации (92).

Вопрос. Какие требования необходимо выполнять при монтаже, ремонте и наладке оборудования под давлением?

Ответ. При монтаже, ремонте, наладке оборудования под давлением должны быть выполнены требования изготовителя оборудования, указанные в руководстве (инструкции) по эксплуатации (93).

Реконструкция (модернизация) оборудования под давлением должна быть осуществлена по проекту, разработанному организацией — изготовителем оборудования или проектной организацией. Если реконструкция (модернизация) проводится с отступлениями от требований руководства (инструкции) по эксплуатации, то эти отступления должны быть согласованы с разработчиком руководства (инструкции) по эксплуатации. В случае если объем и характер работ по реконструкции (модернизации) предусматривает изменение конструкции основных элементов и технических характеристик оборудования, создающих необходимость оформления нового паспорта и руководства (инструкции) по эксплуатации, то после окончания работ должно быть обеспечено подтверждение соответствия оборудования требованиям ТР ТС 032/2013 с последующим вводом в эксплуатацию в соответствии с требованиями настоящих ФНП (94).

Вопрос. Какие требования предъявляются к материалам и полуфабрикатам, используемым при монтаже, ремонте и реконструкции оборудования под давлением?

Ответ. Применяемые при монтаже, ремонте и реконструкции (модернизации) оборудования под давлением, материалы и полуфабрикаты должны обеспечивать безопасные эксплуатационные параметры, определяемые их механическими свойствами, химическим составом, технологией изготовления, методами и объемами испытаний и контроля качества, гарантированным уровнем расчетных и технологических характеристик, и должны соответствовать требованиям технической документации изготовителя и проектной документации. Использование при ремонте оборудования иных материалов допускается при условии согласования возможности их применения с разработчиком проекта и (или) изготовителем, а в случае их отсутствия на основании заключения научно-исследовательской организации, специализирующейся в области материаловедения.

Применение при монтаже, ремонте и реконструкции (модернизации) оборудования под давлением полуфабрикатов, изготовленных из новых материалов, допускается на основании результатов исследований (исследовательской аттестации), выполненных научно-исследовательской организацией, подтверждающих обеспечение безопасных эксплуатационных параметров, а также положительного опыта их применения при изготовлении оборудования под давлением (95).

Bonpoc. Какие требования предъявляются к работникам специализированных организаций, осуществляющим монтаж, ремонт и наладку оборудования под давлением?

Ответ. Работники специализированной организации, непосредственно осуществляющие работы по монтажу (демонтажу), ремонту, реконструкции (модернизации) и наладке оборудования под давлением, в порядке, установленном распорядительными документами организации и нормативными документами Ростехнадзора², должны пройти:

- а) руководители и специалисты подготовку и аттестацию в области промышленной безопасности и настоящих ФНП в объеме должностных обязанностей, установленных распорядительными документами специализированной организации;
- б) рабочие проверку знаний в объеме квалификационных требований (в рамках профессионального обучения), а также в объеме требований производственных инструкций и (или) инструкций для данной профессии.

Периодическая аттестация руководителей и специалистов проводится один раз в пять лет.

Проверка знаний требований производственных инструкций и (или) инструкций для данной профессии у рабочих проводится один раз в 12 месяцев.

Внеочередная аттестация руководителей и специалистов и проверка знаний рабочих проводится в случаях, установленных положением об аттестации и положением о проверке знаний (96).

Сварщики и специалисты сварочного производства, привлекаемые к работам по ремонту, монтажу, реконструкции (модернизации) оборудования под давлением, должны пройти в установленном порядке аттестацию в соответствии с Правилами аттестации сварщиков и специалистов сварочного производства и Технологическим регламентом проведения аттестации сварщиков и специалистов сварочного производства (97).

Персонал, осуществляющий неразрушающий контроль качества сварных соединений, должен в установленном порядке пройти аттестацию в соответствии с Правилами аттестации персонала в области неразрушающего контроля (98).

Работники должны владеть приемами оказания первой помощи пострадавшим при несчастных случаях (99).

Требования к организациям, осуществляющим монтаж, ремонт, реконструкцию (модернизацию), наладку оборудования и к работникам этих организаций

Вопрос. Какие требования предъявляются к специализированным организациям, осуществляющим монтаж, ремонт и наладку оборудования под давлением?

Ответ. Структура управления в специализированной организации должна обеспечивать каждому работнику конкретную сферу деятельности и пределы его полномочий. Распределение ответственности работников специализированной организации должно быть установлено в положении о контроле соблюдения технологических процессов специализированной организации (100).

Специализированная организация должна:

 $^{^{2}}$ Полный перечень соответствующих нормативных правовых актов представлен в Правилах.

- а) иметь руководителей и специалистов, удовлетворяющих требованиям пунктов 96, 97 настоящих ФНП, для обеспечения выполнения работ в рамках их должностных обязанностей и полномочий, в том числе выявления случаев отступления от требований к качеству работ, от процедур выполнения работ и принятия мер по предупреждению или сокращению таких отступлений;
- б) располагать персоналом в количестве, устанавливаемом распорядительными документами специализированной организации и позволяющем обеспечивать выполнение технологических процессов при производстве соответствующих работ;
- в) не допускать к производству работ по монтажу (демонтажу), наладке, либо ремонту или реконструкции (модернизации) оборудования под давлением лиц, не достигших восемнадцатилетнего возраста, либо лиц, имеющих медицинские противопоказания к выполнению указанных работ;
 - г) определить процедуры контроля соблюдения технологических процессов;
- д) устанавливать ответственность, полномочия и порядок взаимоотношений работников, занятых в управлении, выполнении или проверке выполнения работ (101).

Технологическая подготовка производства и производственный процесс в специализированной организации должны исключать использование материалов и изделий, на которые отсутствуют документы, подтверждающие их соответствие и качество (сертификаты, паспорта, формуляры).

При монтаже, ремонте, реконструкции (модернизации) оборудования запрещается использование стальных труб, ранее бывших в употреблении (102).

Вопрос. Какой технической документацией должна располагать специализированная организация?

Ответ. Специализированная организация должна располагать следующей необходимой документацией, обеспечивающей выполнение заявленных видов работ:

- а) перечень нормативных документов, применяемых при выполнении соответствующих работ в специализированной организации для обеспечения требований промышленной безопасности, установленных законодательством в области промышленной безопасности и настоящими ФНП, утвержденный руководителем специализированной организации;
- б) проектная и техническая документация (включая комплект рабочих чертежей) оборудования под давлением, монтаж (демонтаж), наладка, ремонт, реконструкция (модернизация) которого осуществляется;
- в) технологическая документация по производству заявленных видов работ, разработанная до начала этих работ;
- г) программы-методики испытаний монтируемого (ремонтируемого, реконструируемого) оборудования под давлением, проводимых по окончании работ (103).

Вопрос. Каким оборудованием должна располагать специализированная организация? *Ответ*. Для обеспечения технологических процессов при выполнении работ по монтажу (демонтажу), наладке либо ремонту или реконструкции (модернизации) специализированная организация, в зависимости от осуществляемых видов деятельности, должна иметь:

- а) комплекты необходимого оборудования для выполнения работ по контролю технического состояния оборудования под давлением до начала выполнения работ и после их выполнения;
- б) сборочно-сварочное, термическое оборудование, необходимое для выполнения работ по резке, правке, сварке и термической обработке металла, а также необходимые сварочные материалы. Используемые технологии сварки должны быть аттестованы в установленном порядке;

- в) контрольное оборудование, приборы и инструменты, необходимые для выявления недопустимых дефектов сварных соединений. Для выполнения работ по неразрушающему и разрушающему контролю качества сварных соединений специализированная организация должна иметь или привлекать на договорной основе аттестованную в установленном порядке лабораторию;
- г) средства измерения и контроля, прошедшие метрологическую проверку и позволяющие выполнять наладочные работы, оценивать работоспособность, выполнять ремонт, реконструкцию (модернизацию);
- д) такелажные и монтажные приспособления, грузоподъемные механизмы, домкраты, стропы, необходимые для проведения работ по монтажу (демонтажу), ремонту, реконструкции (модернизации), а также вспомогательные приспособления (подмости, ограждения, леса), которые могут быть использованы при проведении работ (104).

Вопрос. Каким требованиям должны отвечать работники специализированных организаций, выполняющие монтаж, ремонт и наладку оборудования под давлением?

Ответ. Работники специализированных организаций, непосредственно выполняющие работы по монтажу (демонтажу), наладке либо ремонту или реконструкции (модернизации) оборудования под давлением в процессе его эксплуатации, должны отвечать следующим требованиям:

- а) иметь документы, подтверждающие прохождение в установленном порядке профессионального обучения по соответствующим видам рабочих специальностей, а также иметь выданное в установленном порядке удостоверение о допуске к самостоятельной работе (для рабочих);
- б) иметь документы о прохождении в установленном порядке аттестации (для руководителей и специалистов);
- в) знать и соблюдать требования технологических документов и инструкций по проведению заявленных работ;
- г) знать основные источники опасностей при проведении указанных работ, знать и применять на практике способы защиты от них, а также безопасные методы выполнения работ;
- д) знать и уметь применять способы выявления и технологию устранения дефектов в процессе монтажа, ремонта, реконструкции (модернизации);
- е) знать и уметь применять для выполнения монтажа (демонтажа), ремонта и реконструкции (модернизации) оборудования такелажные и монтажные приспособления, грузоподъемные механизмы, стропы, соответствующие по грузоподъемности массам монтируемых (демонтируемых), ремонтируемых и реконструируемых (модернизируемых) элементов;
- ж) знать и уметь применять установленный в инструкциях порядок обмена условными сигналами между работником, руководящим монтажом (демонтажом) и остальными работниками, задействованными на монтаже (демонтаже) оборудования;
- з) знать и выполнять правила строповки, основные схемы строповки грузов (при выполнении обязанностей стропальщика), а также требования промышленной безопасности при подъеме и перемещении грузов;
- и) знать порядок и методы выполнения работ по наладке и регулированию оборудования;
- к) уметь применять контрольные средства, приборы, устройства при проверке, наладке и испытаниях (105).

Требования к монтажу, ремонту и реконструкции (модернизации) оборудования

Вопрос. Как осуществляется монтаж, ремонт и реконструкция оборудования под давлением с применением сварки и термической обработки?

Ответ. Монтаж, ремонт и реконструкция (модернизация) оборудования под давлением с применением сварки и термической обработки должны быть проведены по технологии и рабочим чертежам, разработанным до начала производства работ специализированной организацией, выполняющей соответствующие работы.

Все положения принятой технологии должны быть отражены в технологической документации, регламентирующей содержание и порядок выполнения всех технологических и контрольных операций (106).

При монтаже, ремонте и реконструкции (модернизации) с применением сварки и термической обработки должна быть применена установленная распорядительными документами специализированной организации система контроля качества (входной, операционный, приемочный), обеспечивающая выполнение работ в соответствии с настоящими ФНП и технологической документацией (107).

Вопрос. Как осуществляются профилактический ремонт и техническое обслуживание оборудования, не требующие применения сварки и термической обработки?

Ответ. Текущий профилактический ремонт и техническое обслуживание оборудования, не требующие применения сварки и термической обработки, выполняют работники (ремонтный персонал) эксплуатирующей или специализированной организации. Порядок выполнения, объем и периодичность выполнения работ определяют утвержденные в эксплуатирующей организации производственные и технологические инструкции, разработанные с учетом требований руководств (инструкций) по эксплуатации и фактического состояния оборудования (108).

Резка и деформирование полуфабрикатов

Вопрос. Как осуществляется резка листов, труб и других полуфабрикатов?

Ответ. Резка листов, труб и других полуфабрикатов, а также вырезка отверстий могут быть произведены любым способом (механическим, газопламенным, электродуговым, плазменным). Конкретный способ и технологию резки устанавливает технологическая документация в зависимости от классов сталей и характеристик материала (109).

Применяемая технология термической резки материалов, чувствительных к местному нагреву и охлаждению, должна исключать образование трещин на кромках и ухудшение свойств металла в зоне термического влияния. В необходимых случаях, предусмотренных технологической документацией, следует предусматривать предварительный подогрев и последующую механическую обработку кромок для удаления слоя металла с ухудшенными в процессе резки свойствами (110).

Вопрос. Как осуществляется деформация труб?

Ответ. Гибку труб допускается производить любым освоенным специализированной организацией способом, обеспечивающим получение качества гиба, соответствующего требованиям технологической документации (111).

Для обеспечения сопряжения поперечных стыков труб допускается расточка, раздача или обжатие концов труб. Значения расточки, деформация раздачи или обжатия принимаются в пределах, установленных технологической документацией (112).

Холодный натяг трубопроводов, если он предусмотрен проектом, может быть произведен лишь после выполнения всех сварных соединений, за исключением замыкающего, окончательного закрепления неподвижных опор на концах участка, подлежащего холодному натягу, а также после термической обработки (при необходимости ее проведения) и контроля качества сварных соединений, расположенных по всей длине участка, на котором необходимо произвести холодный натяг (113).

Сварка

Вопрос. Какие требования предъявляются к технологии сварки при монтаже и ремонте оборудования под давлением?

Ответ. При доизготовлении на месте эксплуатации, монтаже, ремонте, реконструкции (модернизации) оборудования под давлением должна быть применена технология сварки, аттестованная в соответствии с установленными требованиями (114).

Технологическая документация должна содержать указания по технологии сварки металла (в том числе и по прихватке), применению присадочных материалов, видам и объему контроля, а также по предварительному и сопутствующему подогреву и термической обработке. Требования к сварке распространяются также и на наплавки (115).

Для выполнения сварки должны быть применены исправные установки, аппаратура и приспособления, обеспечивающие соблюдение требований технологической документации (116).

Вопрос. Какие требования предъявляются к персоналу, выполняющему сварочные работы при монтаже и ремонте оборудования под давлением?

Ответ. К производству работ по сварке и прихватке элементов оборудования, предназначенных для работы под давлением, допускают сварщиков, имеющих удостоверение на право выполнения данных сварочных работ. Сварщики должны выполнять сварочные работы только тех видов, к проведению которых согласно удостоверению они допущены.

Сварщик, впервые приступающий в данной специализированной организации к сварке оборудования под давлением и его элементов, независимо от наличия удостоверения, должен перед допуском к работе пройти проверку путем сварки и контроля пробного сварного соединения. Конструкция пробного сварного соединения должна соответствовать видам работ, указанных в удостоверении сварщика. Методы, объемы и нормы контроля качества сварки пробного сварного соединения должны отвечать требованиям технологической документации (117).

Руководство работами по сборке, сварке и контролю качества сварных соединений должно быть возложено на специалиста, прошедшего в установленном порядке аттестацию (118).

Вопрос. Как осуществляется подготовка соединяемых элементов для выполнения сварочных работ?

Ответ. Перед началом сварки должно быть проверено качество сборки соединяемых элементов, а также состояние стыкуемых кромок и прилегающих к ним поверхностей. При сборке не допускается подгонка кромок ударным способом или местным нагревом (119).

Подготовка кромок и поверхностей под сварку должна быть выполнена механической обработкой либо путем термической резки или строжки (кислородной, воздушно-дуговой, плазменно-дуговой) с последующей механической обработкой (резцом, фрезой, абразивным инструментом). Глубина механической обработки после термической резки (строжки) должна быть указана в технологической документации в зависимости от восприимчивости конкретной марки стали к термическому циклу резки или строжки (120).

При сборке стыковых соединений труб с односторонней разделкой кромок и свариваемых без подкладных колец и подварки корня шва смещение (несовпадение) внутренних кромок не должно превышать значений, установленных в технологической документации (121).

Кромки деталей, подлежащих сварке, и прилегающие к ним участки должны быть очищены от окалины, краски, масла и других загрязнений в соответствии с требованиями технологической документации (122).

Приварка и удаление вспомогательных элементов (сборочных устройств, временных креплений) должны быть произведены в соответствии с указаниями чертежей и технологической документации по технологии, исключающей образование трещин и закалочных зон в металле оборудования под давлением. Приварку этих элементов должен выполнять сварщик, допущенный к проведению сварочных работ на данном оборудовании под давлением (123).

Прихватка собранных под сварку элементов должна быть выполнена с использованием тех же сварочных материалов, которые будут применены (или допускаются к применению) для сварки данного соединения.

Прихватки при дальнейшем проведении сварочных работ удаляют или переплавляют основным швом (124).

Вопрос. Как осуществляется маркировка сварных соединений?

Ответ. Сварные соединения элементов, работающих под избыточным давлением, с толщиной стенки более 6 мм подлежат маркировке (клеймению), позволяющей установить фамилию сварщика, выполнившего сварку. Система маркировки указывается в технологической документации. Способ маркировки должен исключать наклеп, подкалку или недопустимое утонение толщины металла и обеспечить сохранность маркировки в течение всего периода эксплуатации оборудования.

Необходимость и способ маркировки сварных соединений с толщиной стенки 6 мм и менее устанавливается требованиями технологической документации (125).

Если все сварные соединения данного оборудования выполнены одним сварщиком, то маркировку каждого сварного соединения допускается не производить. В этом случае клеймо сварщика следует ставить около фирменной таблички или на другом открытом участке оборудования и место клеймения заключить в рамку, наносимую несмываемой краской. Места клеймения должны быть указаны в паспорте оборудования или в приложенных к паспорту сборочных чертежах (126).

Если сварное соединение выполняли несколько сварщиков, то на нем должно быть поставлено клеймо каждого сварщика, участвовавшего в его выполнении, в порядке, установленном в технологической документации (127).

Вопрос. Какие требования предъявляются к материалам, применяемым для сварки оборудования под давлением?

Ответ. Сварочные материалы, применяемые для сварки оборудования под давлением при его монтаже, ремонте, реконструкции (модернизации) должны соответствовать требованиям проектной документации и руководства (инструкции) по эксплуатации (128).

Марка, сортамент, условия хранения и подготовка к использованию сварочных материалов должны соответствовать требованиям технологической документации (129).

Сварочные материалы должны быть проконтролированы:

- а) на наличие соответствующей сопроводительной документации;
- б) каждая партия электродов на сварочно-технологические свойства, а также на соответствие содержания легирующих элементов нормированному составу путем стилоскопирования (или другим спектральным методом, обеспечивающим подтверждение наличия в металле легирующих элементов) наплавленного металла, выполненного легированными электродами;
 - в) каждая партия порошковой проволоки на сварочно-технологические свойства;

- г) каждая бухта (моток, катушка) легированной сварочной проволоки на наличие основных легирующих элементов путем стилоскопирования или другим спектральным методом, обеспечивающим подтверждение наличия в металле легирующих элементов;
- д) каждая партия проволоки с каждой партией флюса, которые будут использованы совместно для автоматической сварки под флюсом, на механические свойства металла шва (130).

Вопрос. Как производится аттестация технологии сварки?

Ответ. Технология сварки при монтаже, ремонте, реконструкции (модернизации) оборудования под давлением допускается к применению после подтверждения ее технологичности на реальных изделиях, проверки всего комплекса требуемых свойств сварных соединений и освоения эффективных методов контроля их качества. Применяемая технология сварки должна быть аттестована в соответствии с установленными требованиями (131).

Аттестацию технологии сварки подразделяют на исследовательскую и производственную. Исследовательскую аттестацию проводит научно-исследовательская организация при подготовке к внедрению новой, ранее не аттестованной технологии сварки. Производственную аттестацию проводит каждая специализированная организация на основании рекомендаций, выданных по результатам исследовательской аттестации (132).

Вопрос. Каковы цели и задачи исследовательской аттестации технологии сварки?

Ответ. Исследовательскую аттестацию технологии сварки проводят в целях определения характеристик сварных соединений, необходимых для расчетов при проектировании и выдаче технологических рекомендаций (область применения технологии, сварочные материалы, режимы подогрева, сварки и термической обработки, гарантируемые показатели приемо-сдаточных характеристик сварного соединения, методы контроля).

Характеристики сварных соединений, определяемые при исследовательской аттестации, выбирают в зависимости от вида и назначения основного металла и следующих условий эксплуатации сварных соединений:

- а) механические свойства при нормальной (20 ± 10 °C) и рабочей температуре, в том числе временное сопротивление разрыву, предел текучести, относительное удлинение и относительное сужение металла шва, ударная вязкость металла шва и зоны термического влияния сварки, временное сопротивление разрыву и угол изгиба сварного соединения;
 - б) длительная прочность, пластичность и ползучесть;
 - в) циклическая прочность;
- г) критическая температура хрупкости металла шва и зоны термического влияния сварки;
- д) стабильность свойств сварных соединений после термического старения при рабочей температуре;
 - е) интенсивность окисления в рабочей среде;
 - ж) отсутствие недопустимых дефектов;
- 3) стойкость против межкристаллитной коррозии (для сварных соединений элементов из сталей аустенитного класса);
- и) характеристики, специфические для выполняемых сварных соединений, устанавливаемые организацией, проводящей их исследовательскую аттестацию.

По результатам исследовательской аттестации организацией, проводившей ее, должны быть выданы рекомендации, необходимые для практического применения технологии сварки (133).

Вопрос. Каковы цели и задачи производственной аттестации технологии сварки?

Ответ. Производственную аттестацию технологии сварки проводят до начала ее применения в целях проверки соответствия сварных соединений, выполненных по ней в конкретных условиях производства, требованиям настоящих ФНП и технологической документации. Производственная аттестация должна быть проведена для каждой группы однотипных сварных соединений, выполняемых в данной специализированной организации (134).

Производственную аттестацию проводит аттестационная комиссия, созданная в специализированной организации в соответствии с программой, разработанной этой организацией и утвержденной председателем комиссии.

Программа должна предусматривать проведение неразрушающего и разрушающего контроля сварных соединений, оценку качества сварки по результатам контроля и оформление итогового документа по результатам производственной аттестации.

Порядок проведения производственной аттестации определяет технологическая документация.

Если при производственной аттестации технологии сварки получены неудовлетворительные результаты по какому-либо виду испытаний, аттестационная комиссия должна принять меры по выяснению причин несоответствия полученных результатов установленным требованиям и решить, следует ли провести повторные испытания или данная технология не может быть использована для сварки производственных соединений и нуждается в доработке (135).

В случае ухудшения свойств или качества сварных соединений по отношению к уровню, установленному исследовательской аттестацией, специализированная организация должна приостановить применение технологии сварки, установить и устранить причины, вызвавшие их ухудшение, и провести повторную производственную, а при необходимости – и исследовательскую аттестацию (136).

При монтаже, ремонте, реконструкции (модернизации) оборудования под давлением могут быть применены любые аттестованные технологии сварки.

Не допускается применение газовой сварки для деталей из аустенитных сталей и высокохромистых сталей мартенситного и мартенситно-ферритного класса (137).

Вопрос. При каких условиях осуществляется сварка элементов оборудования под давлением?

Ответ. Сварка элементов, работающих под избыточным давлением, как правило, должна проводиться при положительной температуре окружающего воздуха. Допускается выполнять сварку в условиях отрицательной температуры при соблюдении требований технологической документации и создании необходимых условий для защиты места сварки и сварщика от воздействий ветра и атмосферных осадков. При отрицательной температуре окружающего воздуха металл в районе сварного соединения перед сваркой должен быть просушен и прогрет с доведением температуры до положительного значения (138).

Необходимость и режим предварительного и сопутствующих подогревов свариваемых деталей определяются технологией сварки и должны быть указаны в технологической документации. При отрицательной температуре окружающего воздуха подогрев производят в тех же случаях, что и при положительной, при этом температура подогрева должна быть выше на $50\,^{\circ}\mathrm{C}$ (139).

Вопрос. Какими операциями завершается сварка элементов оборудования под давлением?

Ответ. После сварки шов и прилегающие участки должны быть очищены от шлака, брызг металла и других загрязнений.

Внутренний грат в стыках труб, выполненных контактной сваркой, должен быть удален для обеспечения заданного проходного сечения (140).

Термическая обработка элементов оборудования при монтаже, ремонте, реконструкции (модернизации) проводится в случаях, установленных технологической документацией с учетом рекомендаций изготовителя, указанных в руководстве (инструкции) по эксплуатации (141).

Контроль качества сварных соединений

Вопрос. Какие требования предъявляются к системе контроля качества сварных соединений?

Ответ. При доизготовлении на месте эксплуатации, монтаже, ремонте, реконструкции (модернизации) оборудования под давлением должна быть применена система контроля качества сварных соединений, гарантирующая выявление недопустимых дефектов, высокое качество и надежность эксплуатации этого оборудования и его элементов (142).

Методы контроля должны быть выбраны в соответствии с требованиями настоящих ФНП и указаны в технологической документации (143).

Контроль качества сварных соединений должен быть проведен в порядке, предусмотренном проектной и технологической документацией (144).

Методы и объемы контроля сварных соединений приварных деталей, не работающих под внутренним давлением, должны быть установлены технологической документацией (151).

Вопрос. Какие методы применяются для контроля качества сварных соединений? *Ответ*. Контроль качества сварных соединений проводят следующими методами:

- а) визуальный осмотр и измерения;
- б) ультразвуковая дефектоскопия;
- в) радиография (рентгено-, гаммаграфирование);
- г) капиллярный и магнитопорошковый контроль;
- д) стилоскопирование или другой спектральный метод, обеспечивающий подтверждение фактической марки металла или наличие в нем легирующих элементов;
 - е) измерение твердости;
- ж) контроль механических свойств, испытание на стойкость против межкристаллитной коррозии, металлографические исследования (разрушающий контроль);
 - з) гидравлические испытания;
 - и) акустическая эмиссия;
 - к) радиоскопия;
 - л) токовихревой контроль;
 - м) определение содержания в металле шва ферритной фазы;
- н) пневматические испытания, если гидравлические испытания не проводят по указанию изготовителя;
- о) прогонка металлического шара для элементов трубных поверхностей нагрева котлов в случае применения сварки для их сборки при монтаже или ремонте (145).

Вопрос. В какой последовательности осуществляется контроль качества сварных соединений?

Ответ. Приемочный контроль качества сварных соединений должен быть проведен после выполнения всех технологических операций (146).

Визуальный и измерительный контроль, а также предусмотренное технологической документацией стилоскопирование (или другой спектральный метод, обеспечивающий подтверждение фактической марки металла или наличие в нем легирующих элементов) должны предшествовать контролю другими методами (147).

Вопрос. Как регистрируются результаты контроля качества сварных соединений?

Ответ. Результаты по каждому виду проводимого контроля и места контроля должны фиксироваться в отчетной документации, то есть в журналах, формулярах, протоколах, маршрутных паспортах (148).

Вопрос. Какие требования предъявляются к средствам контроля качества сварных соединений?

Ответ. Средства контроля должны проходить в установленном порядке метрологическую поверку (149).

Каждая партия материалов для дефектоскопии (пенетранты, порошок, суспензии, радиографическая пленка, химические реактивы) до начала их использования должна быть подвергнута входному контролю (150).

Вопрос. При каких условиях результаты контроля качества сварных соединений признаются удовлетворительными?

Ответ. Результаты контроля качества сварных соединений признают положительными, если при любом предусмотренном виде контроля не будут обнаружены внутренние и поверхностные дефекты, выходящие за пределы допустимых норм, установленных проектной и технологической документацией (152).

Визуальный осмотр и измерения

Вопрос. Каковы цели визуального осмотра и измерений сварных соединений? *Ответ*. Визуальному осмотру и измерениям подлежат все сварные соединения в целях выявления следующих дефектов:

- а) трещины всех видов и направлений;
- б) свищи и пористости наружной поверхности шва;
- в) подрезы;
- г) наплывы, прожоги, незаплавленные кратеры;
- д) отклонения по геометрическим размерам и взаимному расположению свариваемых элементов;
- е) смещения и совместный увод кромок свариваемых элементов свыше предусмотренных норм;
- ж) несоответствие формы и размеров шва требованиям технологической документации;
- 3) дефекты на поверхности основного металла и сварных соединений вмятины, расслоения, раковины, непровары, поры, включения (153).

Вопрос. Как осуществляются визуальный осмотр и измерения сварных соединений? *Ответ*. Перед визуальным осмотром поверхности сварного шва и прилегающих к нему участков основного металла шириной не менее 20 мм в обе стороны от шва должны быть зачищены от шлака и других загрязнений.

Осмотр и измерения сварных соединений должны быть проведены с наружной и внутренней сторон (при наличии конструктивной возможности) по всей протяженности швов.

В случае невозможности осмотра и измерения сварного соединения с двух сторон его контроль должен быть проведен в порядке, предусмотренном разработчиком проекта (154).

Поверхностные дефекты, выявленные при визуальном осмотре и измерениях, должны быть исправлены до проведения контроля другими неразрушающими методами (155).

Ультразвуковая дефектоскопия и радиографический контроль

Вопрос. Каковы цели ультразвуковой дефектоскопии и радиографического контроля сварных соединений?

Ответ. Ультразвуковую дефектоскопию и радиографический контроль проводят в целях выявления в сварных соединениях внутренних дефектов (трещин, непроваров, шлаковых включений).

Метод контроля (ультразвуковой, радиографический, оба метода в сочетании) выбирают исходя из возможности обеспечения наиболее полного и точного выявления дефектов конкретного вида сварных соединений с учетом особенностей физических свойств металла и данного метода контроля.

Объем контроля для каждого конкретного вида оборудования под давлением указывается в проектной и технологической документации (156).

Вопрос. Как осуществляются ультразвуковая дефектоскопия и радиографический контроль сварных соединений?

Ответ. Стыковые сварные соединения, которые были подвергнуты ремонтной переварке (устранение дефекта сварного шва), должны быть проверены ультразвуковой дефектоскопией или радиографическим контролем по всей длине сварных соединений.

Ремонтные заварки выборок металла должны быть проверены ультразвуковой дефектоскопией или радиографическим контролем по всему участку заварки, включая зону термического влияния сварки в основном металле, кроме того, поверхность участка должна быть проверена методом магнитопорошковой или капиллярной дефектоскопии. При заварке по всей толщине стенки контроль поверхности должен быть проведен с обеих сторон, за исключением случаев недоступности внутренней стороны для контроля (157).

Если при выборочном контроле сварных соединений, выполненных сварщиком, будут обнаружены недопустимые дефекты, то контролю должны быть подвергнуты все однотипные сварные соединения по всей длине, выполненные данным сварщиком (158).

Ультразвуковая дефектоскопия и радиографический контроль стыковых сварных соединений по согласованию с разработчиком проектной документации может быть заменен другими методами неразрушающего контроля, позволяющими выявлять в сварных соединениях внутренние дефекты (159).

Капиллярный и магнитопорошковый контроль

Вопрос. Каковы цели капиллярного и магнитопорошкового контроля сварных соединений?

Ответ. Капиллярный и магнитопорошковый контроль сварных соединений является дополнительными методами контроля, устанавливаемыми технологической документацией в целях определения поверхностных или подповерхностных дефектов.

Класс и уровень чувствительности капиллярного и магнитопорошкового контроля должны быть установлены технологической документацией (160).

Контроль стилоскопированием

Вопрос. Каковы цели контроля сварных соединений стило-скопированием?

Ответ. Контроль стилоскопированием или другим спектральным методом, обеспечивающим подтверждение фактической марки металла или наличие в нем легирующих элементов, проводят в целях подтверждения соответствия легирования металла сварных швов и элементов оборудования под давлением требованиям чертежей, технологической документации (161).

Измерение твердости

Вопрос. Каковы цели измерения твердости металла сварных соединений?

Ответ. Измерение твердости металла сварного соединения проводят в целях проверки качества выполнения термической обработки сварных соединений. Измерению твердости подлежит металл шва сварных соединений, выполненных из легированных теплоустойчивых сталей перлитного и мартенситноферритного классов, методами и в объеме, установленными технологической документацией (162).

Механические испытания, металлографические исследования, испытания на стойкость против межкристаллитной коррозии

Вопрос. Как осуществляются механические испытания сварных соединений?

Ответ. Механическим испытаниям должны быть подвергнуты контрольные стыковые сварные соединения в целях проверки соответствия их механических свойств требованиям конструкторской и технологической документации. Обязательными видами механических испытаний являются испытания на статическое растяжение, статический изгиб или сплющивание. Для сосудов, работающих под давлением, обязательным видом испытаний также является испытание на ударный изгиб. Испытания на ударный изгиб проводят для сосудов, изготовленных из сталей, склонных к подкалке при сварке, а также для других сосудов, предназначенных для работы при давлении более 5 МПа или температуре выше 450 °C, для работы при температуре ниже —20 °C.

Механические испытания проводят:

- а) при аттестации технологии сварки;
- б) контроле сварных стыковых соединений, выполненных газовой и контактной сваркой;
- в) входном контроле сварочных материалов, используемых при сварке под флюсом и электрошлаковой сварке.

При получении неудовлетворительных результатов по какому-либо виду механических испытаний допускается повторное испытание на удвоенном количестве образцов, вырезанных из тех же контрольных сварных соединений, по тому виду испытаний, по которому получены неудовлетворительные результаты. Если при повторном испытании хотя бы на одном из образцов будут получены показатели свойств, не удовлетворяющие установленным нормам, общая оценка данного вида испытаний считается неудовлетворительной (163).

Необходимость, объем и порядок механических испытаний сварных соединений литых и кованых элементов, труб с литыми деталями, элементов из сталей различных классов, а также других единичных сварных соединений устанавливаются проектной и технологической документацией (164).

Вопрос. Как осуществляются металлографические исследования сварных соединений?

Ответ. Металлографические исследования проводят в целях выявления возможных внутренних дефектов (трещин, непроваров, пор, шлаковых и неметаллических включений), а также участков со структурой металла, отрицательно влияющей на свойства сварных соединений.

Металлографические исследования проводят:

- а) при аттестации технологии сварки;
- б) контроле сварных стыковых соединений, выполненных газовой и контактной сваркой, а также деталей из сталей разных структурных классов (независимо от способа сварки);

- в) контроле сварных угловых и тавровых соединений, в том числе соединений труб (штуцеров) с обечайками, барабанами, коллекторами, трубопроводами, а также тройниковых соединений;
- г) контроле степени графитизации сварных соединений элементов оборудования, изготовленных из углеродистых сталей и работающих под давлением с температурой рабочей среды более $350\,^{\circ}\mathrm{C}$.

Металлографические исследования допускается не проводить:

- а) для сварных соединений сосудов и их элементов, изготовленных из сталей аустенитного класса, толщиной до 20 мм;
- б) для сварных соединений котлов и трубопроводов, изготовленных из стали перлитного класса, при условии контроля этих соединений ультразвуковой дефектоскопией или радиографическим контролем в объеме 100 %;
- в) для сварных соединений труб поверхностей нагрева котлов и трубопроводов, выполненных контактной сваркой на специальных машинах для контактной стыковой сварки с автоматизированным циклом работ при ежесменной проверке качества наладки машины путем испытания контрольных образцов (165).

Вопрос. Как осуществляются испытания сварных соединений на антикоррозионную стойкость?

Ответ. Испытания на стойкость против межкристаллитной коррозии для котлов, трубопроводов и их элементов проводят в случаях, предусмотренных технологической документацией, в целях подтверждения коррозионной стойкости сварных соединений деталей из аустенитных сталей.

Испытание сварных соединений на стойкость против межкристаллитной коррозии должно быть произведено для сосудов и их элементов, изготовленных из сталей аустенитного, ферритного, аустенитно-ферритного классов и двухслойных сталей с коррозионно-стойким слоем из аустенитных и ферритных сталей. Форма, размеры, количество образцов, методы испытаний и критерии оценки склонности образцов к межкристаллитной коррозии должны соответствовать требованиям проектной и технологической документации (166).

Вопрос. На каких образцах проводятся испытания сварных соединений?

Ответ. Механические испытания, металлографические исследования, испытания на стойкость против межкристаллитной коррозии должны быть выполнены на образцах, изготовленных из контрольных сварных соединений. Контрольные сварные соединения должны быть идентичны контролируемым производственным (по маркам стали, толщине листа или размерам труб, форме разделке кромок, методу сварки, сварочным материалам, положению шва в пространстве, режимам и температуре подогрева, термообработке) и выполнены тем же сварщиком и на том же сварочном оборудовании одновременно с контролируемым производственным соединением.

Контрольное сварное соединение подвергают 100 %-ному контролю теми же неразрушающими методами контроля, которые предусмотрены для производственных сварных соединений. При неудовлетворительных результатах контроля контрольные соединения должны быть изготовлены вновь в удвоенном количестве. Если при повторном неразрушающем контроле будут получены неудовлетворительные результаты, то и общий результат считается неудовлетворительным. В этом случае должны быть подвергнуты дополнительной проверке качество материалов, оборудование и квалификация сварщика.

Размеры контрольных соединений должны быть достаточными для вырезки из них необходимого числа образцов для всех предусмотренных видов испытаний и исследований, а также для повторных испытаний и исследований.

Из каждого контрольного стыкового сварного соединения должны быть вырезаны:

- а) два образца для испытания на статическое растяжение;
- б) два образца для испытаний на статический изгиб или сплющивание;
- в) три образца для испытания на ударный изгиб;
- г) один образец (шлиф) для металлографических исследований при контроле сварных соединений из углеродистой и низколегированной стали и не менее двух при контроле сварных соединений из высоколегированной стали, если это предусмотрено технологической документацией;
- д) два образца для испытаний на стойкость против межкристаллитной коррозии (167). Испытания на статический изгиб контрольных стыков трубчатых элементов с условным проходом труб менее 100 мм и толщиной стенки менее 12 мм могут быть заменены испытаниями на сплющивание (168).

Гидравлическое (пневматическое) испытание

Вопрос. Как осуществляются гидравлические испытания оборудования под давлением?

Ответ. Гидравлическое испытание в целях проверки плотности и прочности, а также всех сварных и других соединений проводят:

- а) после монтажа (доизготовления) на месте установки оборудования, транспортируемого к месту монтажа (доизготовления) отдельными деталями, элементами или блоками;
- б) после реконструкции (модернизации), ремонта оборудования с применением сварки элементов, работающих под давлением;
- в) при проведении технических освидетельствований и технического диагностирования в случаях, установленных настоящими ФНП.

Гидравлическое испытание отдельных деталей, элементов или блоков оборудования на месте монтажа (доизготовления) не является обязательным, если они прошли гидравлическое испытание на местах их изготовления или подвергались 100 %-ному контролю ультразвуком или иным равноценным неразрушающим методом дефектоскопии.

Допускается проведение гидравлического испытания отдельных и сборных элементов вместе с оборудованием, если в условиях монтажа (доизготовления) проведение их испытания отдельно от оборудования невозможно.

Гидравлическое испытание оборудования и его элементов проводят после всех видов контроля, а также после устранения обнаруженных дефектов (169).

Сосуды, имеющие защитное покрытие или изоляцию, подвергают гидравлическому испытанию до наложения покрытия или изоляции.

Сосуды, имеющие наружный кожух, подвергают гидравлическому испытанию до установки кожуха.

Допускается эмалированные сосуды подвергать гидравлическому испытанию рабочим давлением после эмалирования (170).

Вопрос. Как определяются минимальное и максимальное значения пробного давления при гидравлических испытаниях оборудования под давлением?

Ответ. Минимальное значение пробного давления P_{np} при гидравлическом испытании для паровых и водогрейных котлов, пароперегревателей, экономайзеров, а также для трубопроводов в пределе котла принимают:

- а) при рабочем давлении не более $0.5~{\rm M\Pi a}-1.5~{\rm pa}$ бочего давления, но не менее $0.2~{\rm M\Pi a}$;
- б) при рабочем давлении свыше $0.5~\mathrm{M\Pi a} 1.25~\mathrm{pa}$ бочего давления, но не менее, чем рабочее давление плюс $0.3~\mathrm{M\Pi a}$.

При проведении гидравлического испытания барабанных котлов, а также их пароперегревателей и экономайзеров за рабочее давление при определении значения пробного давления принимают давление в барабане котла, а для безбарабанных и прямоточных котлов с принудительной циркуляцией — давление питательной воды на входе в котел, установленное проектной документацией.

Максимальное значение пробного давления устанавливают расчетами на прочность паровых и водогрейных котлов.

Значение пробного давления (между максимальным и минимальным) должно обеспечить наибольшую выявляемость дефектов котла или его элементов, подвергаемых гидравлическому испытанию (171).

Вопрос. Как определяются значения пробного давления при гидравлических испытаниях металлических сосудов?

Ответ. Значение пробного давления P_{np} при гидравлическом испытании металлических сосудов (за исключением литых), а также электрокотлов определяют по формуле:

$$P_{np} = 1.25 P \frac{[\sigma]_{20}}{[\sigma]_t},$$
 (1)

где:

P — расчетное давление в случае доизготовления на месте эксплуатации, в остальных случаях — рабочее давление, МПа;

 $[\sigma]_{20}$, $[\sigma]_t$ – допускаемые напряжения для материала сосуда (электрокотла) или его элементов соответственно при 20 °C и расчетной температуре, МПа.

 $[\sigma]_{20}$

Отношение $[\sigma]_t$ материалов сборочных единиц (элементов) сосуда (электрокотла), работающих под давлением, принимают по тому из использованных материалов элементов (обечаек, днищ, фланцев, патрубков и др.) сосуда, для которого оно является наименьшим, за исключением болтов (шпилек), а также теплообменных труб кожухотрубчатых теплообменных аппаратов.

Пробное давление при испытании сосуда, рассчитанного по зонам, следует определять с учетом той зоны, расчетное давление или расчетная температура которой имеет меньшее значение.

Пробное давление для испытания сосуда, предназначенного для работы в условиях нескольких режимов с различными расчетными параметрами (давлениями и температурами), следует принимать равным максимальному из определенных значений пробных давлений для каждого режима.

В случае если для обеспечения условий прочности и герметичности при испытаниях возникает необходимость увеличения диаметра, количества или замены материала болтов (шпилек) фланцевых соединений, разрешается уменьшить пробное давление до максимальной величины, при которой при проведении испытаний обеспечиваются условия прочности болтов (шпилек) без увеличения их диаметра, количества или замены материала.

В случае если сосуд в целом или отдельные части сосуда работают в диапазоне температур ползучести и допускаемое напряжение для материалов этих частей при расчетной температуре $[\sigma]_t$ определяется на базе предела длительной прочности или предела ползучести, разрешается в формулах (1), (7) вместо $[\sigma]_t$ использовать величину допускаемого напряжения при расчетной температуре $[\sigma]_m$, полученную только на базе не зависящих от времени характеристик: предела текучести и временного сопротивления без учета ползучести и длительной прочности.

Формула (1) применяется для определения значения пробного давления при гидравлическом испытании технологических трубопроводов (172).

Bonpoc. Как определяются значения пробного давления при гидравлических испытаниях литых и кованых сосудов?

Ответ. Значение пробного давления P_{np} при гидравлическом испытании литых и кованых сосудов определяется по формуле

$$P_{np} = 1.5P \frac{[\sigma]_{20}}{[\sigma]_t} , \qquad (2)$$

Испытание отливок разрешается проводить после сборки и сварки в собранном узле или готовом сосуде пробным давлением, принятым для сосудов, при условии 100 %-ного контроля отливок неразрушающими методами (173).

Bonpoc. Как определяются значения пробного давления при гидравлических испытаниях сосудов из неметаллических материалов?

Ответ. Гидравлическое испытание сосудов и деталей, изготовленных из неметаллических материалов с ударной вязкостью более $20~\rm{Дж/cm}^2$, должно быть проведено пробным давлением, определяемым по формуле:

$$P_{np} = 1.3P \frac{[\sigma]_{20}}{[\sigma]_t} \,, \tag{3}$$

Гидравлическое испытание сосудов и деталей, изготовленных из неметаллических материалов с ударной вязкостью $20~\rm Дж/cm^2$ и менее, должно быть проведено пробным давлением, определяемым по формуле (174):

$$P_{np} = 1.6P \frac{[\sigma]_{20}}{[\sigma]_t},\tag{4}$$

Значение пробного давления P_{np} при гидравлическом испытании криогенных сосудов при наличии вакуума в изоляционном пространстве определяют по формуле (175):

$$P_{np} = 1,25P - 0,1,(5)$$

Гидравлическое испытание металлопластиковых сосудов должно быть проведено пробным давлением, определяемым по формуле:

$$P_{np} = [1,25K_{M} + \alpha(1 - K_{M})]P\frac{[\sigma]_{20}}{[\sigma]_{t}},$$
 (6)

где: К_м – отношение массы металлоконструкции к общей массе сосуда;

- $\alpha = 1,3$ для неметаллических материалов ударной вязкостью более 20 Дж/см²;
- $\alpha = 1.6$ для неметаллических материалов ударной вязкостью 20 Дж/см² и менее (176).

Вопрос. Как осуществляются гидравлические испытания сосудов, устанавливаемых вертикально, и комбинированных сосудов?

Ответ. Гидравлическое испытание сосудов, устанавливаемых вертикально, разрешается проводить в горизонтальном положении, при этом должен быть выполнен расчет на прочность корпуса сосуда с учетом принятого способа опирания для проведения гидравлического испытания.

В комбинированных сосудах с двумя и более рабочими полостями, рассчитанными на разные давления, гидравлическому испытанию должна быть подвергнута каждая полость пробным давлением, определяемым в зависимости от расчетного давления полости.

Порядок проведения испытания таких сосудов должен быть установлен разработчиком проектной технической документации и указан в руководстве по эксплуатации сосуда (177).

Вопрос. Как определяются значения пробного давления при гидравлических испытаниях трубопроводов пара и горячей воды?

Ответ. Минимальная величина пробного давления при гидравлическом испытании трубопроводов пара и горячей воды, их блоков и отдельных элементов должна составлять 1,25 рабочего давления, но не менее 0,2 МПа. Арматура и фасонные детали трубопроводов должны быть подвергнуты гидравлическому испытанию пробным давлением в соответствии с технологической документацией. Максимальное значение пробного давления устанавливают расчетами на прочность трубопроводов.

Значение пробного давления (между максимальным и минимальным) должно обеспечить наибольшую выявляемость дефектов трубопровода или его элементов, подвергаемых гидравлическому испытанию (178).

Вопрос. Какие требования предъявляются к воде при гидравлических испытаниях оборудования под давлением?

Ответ. Для гидравлического испытания оборудования под давлением, следует использовать воду. Температура воды должна быть не ниже 5 °C и не выше 40 °C, если в технической документации изготовителя оборудования не указано конкретное значение температуры, допустимой по условиям предотвращения хрупкого разрушения.

При гидравлическом испытании паропроводов, работающих с давлением 10 МПа и выше, температура их стенок должна быть не менее 10 °C.

При гидравлическом испытании паровых и водогрейных котлов верхний предел температуры воды может быть увеличен по согласованию с проектной организацией до 80 °C. Если температура металла верха барабана превышает 140 °C, заполнение его водой для проведения гидравлического испытания не допускается.

Используемая для гидравлического испытания вода не должна загрязнять оборудование или вызывать интенсивную коррозию.

Разница температур металла и окружающего воздуха во время гидравлического испытания не должна приводить к конденсации влаги на поверхности стенок оборудования.

В технически обоснованных случаях, предусмотренных изготовителем, при проведении гидравлического испытания при эксплуатации сосудов допускается использовать другую жидкость (179).

Вопрос. Как осуществляются гидравлические испытания оборудования под давлением?

Ответ. При заполнении оборудования водой воздух из него должен быть удален полностью.

Давление в испытуемом оборудовании следует поднимать плавно и равномерно. Общее время подъема давления (до значения пробного) должно быть указано в технологической документации. Давление воды при гидравлическом испытании следует контролировать не менее чем двумя манометрами. Оба манометра выбирают одного типа, предела измерения, одинаковых классов точности (не ниже 1,5) и цены деления.

Использование сжатого воздуха или другого газа для подъема давления в оборудовании, заполненном водой, не допускается.

Время выдержки под пробным давлением паровых и водогрейных котлов, включая электрокотлы, трубопроводов пара и горячей воды, а также сосудов, поставленных на место установки в сборе, устанавливает изготовитель в руководстве по эксплуатации; оно должно быть не менее 10 мин.

Время выдержки под пробным давлением сосудов поэлементной блочной поставки, доизготовленных при монтаже на месте эксплуатации, должно быть не менее:

- а) 30 мин при толщине стенки сосуда до 50 мм;
- б) 60 мин при толщине стенки сосуда свыше 50 до 100 мм;
- в) 120 мин при толщине стенки сосуда свыше 100 мм.

Для литых, неметаллических и многослойных сосудов независимо от толщины стенки время выдержки должно быть не менее 60 мин.

Время выдержки технологических трубопроводов под пробным давлением при гидравлическом испытании должно быть не менее 15 мин.

Если технологический трубопровод испытывают совместно с сосудом (аппаратом), к которому он присоединен, время выдержки принимают по времени, требуемому для сосуда или аппарата (180).

После выдержки под пробным давлением давление снижается до обоснованного расчетом на прочность значения, но не менее рабочего давления, при котором проводят визуальный контроль наружной поверхности оборудования и всех его разъемных и неразъемных соединений (181).

После проведения гидравлического испытания необходимо обеспечить удаление воды из испытуемого оборудования.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.