А.И. Белоус, С.А. Ефименко, А.С. Турцевич

ПОЛУПРОВОДНИКОВАЯ СИЛОВАЯ ЭЛЕКТРОНИКА

электроники

А.И. Белоус

С.А. Ефименко

А.С. Турцевич

Полупроводниковая силовая электроника

ТЕХНОСФЕРА Москва 2013 УДК 621.382.026 ББК 32.852 Б43

Б43 Белоус А.И., Ефименко С.А., Турцевич А.С.

Полупроводниковая силовая электроника

Москва: Техносфера, 2013. — 216 с. + 12 с. цв. вкл. ISBN 978-5-94836-367-7

В книге представлена информация о принципах работы и основных технических характеристиках базовых элементов силовой электроники. На практических примерах рассмотрены основные аспекты проектирования и изготовления элементов силовой электроники, особенности их применения в различных типах энергосберегающих приборов и электронных устройств для осветительной техники, автоэлектроники, управления электродвигателями и источниками питания.

Книга ориентирована на широкий круг читателей — ученых, инженерно-технических работников, студентов, инженеров-разработчиков радио-электронной аппаратуры.

УДК 621.382.026 ББК 32.852

^{© 2013,} А.И. Белоус, С.А. Ефименко, А.С. Турцевич

^{© 2013,} ЗАО «РИЦ «Техносфера», оригинал-макет, оформление

Содержание

Предисловие	6
Введение	. 10
Глава 1. Элементная база силовой электроники	. 14
1.1. Проблемы преобразования электрической энергии	. 14
1.2. Классификация элементной базы силовой электроники	. 17
Глава 2. Полупроводниковые приборы силовой электроники	. 20
2.1. Силовые полупроводниковые диоды	. 20
2.2. Силовые транзисторы	. 25
2.2.1. Биполярный транзистор	. 25
2.2.2. Мощные биполярные транзисторы и каскады Дарлингтона	. 27
2.2.3. Мощные полевые транзисторы (MOSFET)	. 29
2.2.4. Биполярный транзистор с изолированным затвором (IGBT)	. 31
2.3. Многослойные интегральные силовые приборы	. 33
2.3.1. Тиристоры	. 33
2.3.2. Динисторы	
2.3.3. Симисторы	. 36
Глава 3. Интегральные микросхемы силовой электроники	. 37
3.1. Микросхемы для источников питания	. 38
3.1.1. Структура источников питания	. 38
3.1.2. Полупроводниковые выпрямители напряжения	
для источников питания	. 39
3.2. Микросхемы стабилизаторов напряжения	. 43
3.2.1. Схемотехническая реализация источников опорного	
напряжения (ИОН)	. 45
3.2.2. Источник опорного напряжения, равного ширине	
запрещенной зоны полупроводника	
3.2.3. Источники опорного напряжения на МОП-транзисторах	. 49
3.2.4. Особенности схемотехнической реализации мощных	
выходных каскадов микросхем стабилизаторов напряжения	
3.2.5. Схема защиты от повышенного входного напряжения	
3.2.6. Схемы защиты от превышения температуры кристалла	. 53
3.2.7. Схема защиты выхода микросхемы стабилизатора напряжения	
от тока короткого замыкания	. 55
3.2.8. Подгонка параметров микросхем в процессе производства	
путем пережигания перемычек	. 56
3.2.9. Электрическая и лазерная подгонка параметров микросхем	5 0
в процессе производства	
3.3. Микросхемы управления импульсными источниками питания	, ou
управления импульсными источниками питания	60
ympabatettaa muniyabettbiinin neto annaann matanna	. 00

3.3.2. Структурная схема и принцип работы микросхемы	
ШИМ-контроллера с дополнительной обратной связью	
по току	
3.3.3. Микросхемы импульсных стабилизаторов напряжения	
3.3.4. Коррекция коэффициента мощности	66
3.3.5. Схемотехника микросхем импульсных стабилизаторов	
напряжения	69
3.3.6. Схемотехника микросхем управления	
импульсными источниками питания	
3.4. Микросхемы управления электродвигателями	93
3.4.1. Обобщенная структура и классификация электродвигателей	93
3.4.2. Микросхемы управления шаговыми двигателями	95
3.4.3. Микросхемы управления коллекторными	
электродвигателями	99
3.4.4. Отечественные микросхемы управления коллекторными	
двигателями переменного тока	102
3.4.5. Микросхемы для управления вентильными двигателями	
постоянного тока	103
3.4.6. Типовой пример микросхемы управления вентильными	
двигателями	105
3.5. Микросхемы управления осветительным оборудованием	
3.5.1. Виды источников света и их основные характеристики	
3.5.2. Микросхемы управления лампами накаливания	
3.5.3. Микросхемы управления газоразрядными источниками света	
3.5.4. Микросхемы управления светодиодными источниками света	
3.5.5. Отечественные микросхемы драйверов светодиодов	
3.6. Силовые микросхемы для автомобильной электроники	
3.6.1. Электронные системы управления автомобилями	
3.6.2. Силовые микросхемы и полупроводниковые приборы	102
для систем электропитания автомобилей	138
3.6.3. Электронные системы управления двигателями	150
внутреннего сгорания (ЭСУД)	140
3.7. Драйверы управления MOSFET и IGBT	
3.7.1. Требования к входным сигналам MOSFET и IGBT	
3.7.2. Схемы управления MOSFET и IGBT	
3.7.3. Быстродействующие драйверы MOSFET и IGBT	140
3.7.4. Драйверы MOSFET и IGBT с расширенными	177
функциональными возможностями	150
функциональными возможностями	150
Глава 4. Технологии изготовления ИМС силовой электроники	
4.1. Биполярные технологии изготовления ИМС	154
4.2. КМОП технология изготовления ИМС силовой электроники	
4.3. БиКМОП технология изготовления ИМС силовой электроники	158
4.4. ДМОП, КДМОП и БиКДМОП технология изготовления ИМС	
силовой электроники	160

4.5. Достоинства и недостатки ИМС силовой электроники,	
реализованных по разным технологиям	164
Глава 5. Статистический анализ и оптимизация в задачах	
сквозного проектирования микросхем силовой электроники	166
5.1. Статистический анализ и оптимизация параметров микросхем	
силовой электроники	166
5.2. Иерархический статистический анализ микросхем силовой	
электроники	170
5.2.1. Статистическое моделирование прибора	171
5.2.2. Моделирование на уровнях схемы и системы	173
5.3. Обобщенная структура методологии сквозного статистического	
анализа и оптимизации в силовой электронике	174
5.4. Результаты проведения сквозного статистического анализа	
и оптимизации параметров типовой микросхемы силовой	
электроники	176
5.4.1. Статистический анализ параметров технологии	176
5.4.2. Статистический анализ параметров прибора	
(n-МОП транзистора)	185
5.4.3. Статистический анализ параметров схемы (инвертор на базе	
n-МОП-транзисторов)	
Выводы по главе 5	192
Глава 6. Особенности корпусирования мощных полупроводниковых	
приборов и интегральных микросхем	194
6.1. Проблема отвода тепла. Тепловое сопротивление.	
Способы уменьшения теплового сопротивления	194
6.2. Основные типы корпусов для полупроводниковых приборов	
и микросхем силовой электроники	196
6.3. Измерение тепловых сопротивлений силовых	
полупроводниковых приборов	201
Литература	
J1M1Cpa1ypa	∠∪∪

Предисловие

Предлагаемая вниманию читателя книга ориентирована на широкий круг читателей — ученых, инженерно-технических работников, студентов профессионально-технических училищ, колледжей и высших учебно-технических заведений, инженеров-разработчиков радиоэлектронной аппаратуры, разработчиков дискретных полупроводниковых приборов и интегральных микросхем, а также инженеров и технических специалистов по ремонту и эксплуатации в таких разных по профилю профессиональной деятельности сферах, как промышленная и бытовая радиоэлектронная аппаратура, автомобильная электроника, электротехника, осветительная техника, электрические машины и различные устройства преобразования электрической энергии.

Столь широкий круг потенциальных читателей книги обусловлен уникальностью предмета исследований книги – силовой электроникой. Это достаточно новое и стремительно развивающееся направление научно-технического прогресса сегодня даже не имеет четко установившейся общепринятой терминологии. Если любознательный читатель обратится к Интернету и с помощью всезнающей Википедии попробует узнать, а что же это за такое направление, он будет разочарован. Обычно вся суть нового явления (направление, вид деятельности) в этой общепризнанной универсальной энциклопедии описывается в так называемых «основных статьях» по каждому из направлений, которые в терминологии Википедии называются «категориями» и «подкатегориями». Так вот — по категории «силовая электроника» такая «основная статья» еще не написана, хотя всего в двух там присутствуюших «подкатегориях» («системы управления электродвигателями» и «источники питания») уже имеются более тридцати страниц, посвященных терминологии предметов исследований этой области науки и техники — (электронный привод, тиристоры, выпрямители, преобразователи энергии, IGBT, MOSFET, тиристорные регуляторы мошности, силовые модули, бортовые электронные системы управления двигателями и т.п.).

С другой стороны, в многочисленной зарубежной и даже в не столь многочисленной отечественной литературе существует множество различных публикаций (статьи, монографии, справочники, описания патентов, руководства по применению и т.д.), рассматривающих некоторые частные аспекты проблемы силовой полупроводниковой электроники — теоретические исследования, методы расчета и проектирования конкретных силовых машин и устройств, методы расчета проектирования дискретных полупроводниковых приборов и интегральных микросхем, предназначенных для использования в различных устройствах, связанных с преобразованием энергии, и др.

Наиболее полно проблематика научно-технического направления «силовая электроника» рассмотрена в фундаментальной работе «Semiconductor Technical information, technologies and characteristics date», опубликованной «Pablisic Corporate Publishing» в Германии в 2000 г. Это издание было подготовлено штаб-квартирой одного из мировых лидеров в области полупроводниковой технологии и ее применений — фирмы Infinion Technologies AG и представляет собой фактически универсальное справочное пособие для ученых и инженеров, специализи-

рующихся в области проектирования и применения современных полупроводниковых изделий, состоящее из отдельных глав по конкретным направлениям, подготовленных большим авторским коллективом ученых и специалистов с мировым именем под редакцией председателя правления этой крупнейшей международной корпорации профессора Ульриха Шумахера. Несомненным достоинством этой книги является то, что авторы в пределах одной монографии сумели талантливо изложить в ней все современные тенденции, веяния и достижения в области полупроводниковых технологий.

При ее написании авторы исходили из двух сформулированных ими основных постулатов. Во-первых, будущим инженерам-электронщикам и электротехникам, а также преподавателям и пользователям всегда нужно иметь под рукой сборник справочных материалов по современной микроэлектронике. Во-вторых, чтобы стать популярным среди специалистов, это издание должно выполнять функции и классического учебника, и надежного краткого справочника, и просто увлекательной книги.

Надо отметить, что создатели этой уникальной коллективной монографии действительно достигли этой цели — в 2004 г. вышло уже третье актуализированное издание, а в 2012 г. в Германии было издано уже очередное — седьмое доработанное издание этой книги, которое пользуется огромной популярностью у широкого круга читателей.

Из 16-ти глав этой фундаментальной работы только четыре главы в той или иной степени рассматривают проблемы современной силовой электроники и ее элементной базы.

К сожалению, на русский язык эта монография до сих пор не переведена, хотя сегодня различные ее русскоязычные версии можно легко найти в Интернете.

К мелким недостаткам этой книги можно отнести только тот факт, что практические вопросы применения микроэлектронных изделий силовой электроники в составе конкретных систем и законченных приборов, важные для основного контингента читателей, рассмотрены здесь на ограниченном количестве примеров (только для демонстрации принципа использования) и только на зарубежных микросхемах и полупроводниковых приборах (ППП). А, как известно, многочисленные отечественные разработчики надежной аппаратуры, особенно специального и двойного назначения, могут использовать достаточно широкий ряд отечественных микросхем, разработанных и производимых в России и Беларуси, что может позволить им избежать неприятных проблем с надежностью и качеством заполнивших мировой рынок китайских дешевых клонов микросхем известных американских и европейских фирм-производителей элементной базы силовой электроники.

Удивительно, но одним из наиболее удачных примеров переводной литературы является книга индийского профессора С. Рама Редди «Fundamentals of Power Electronics», изданная более 13-ти лет назад в Дели (Индия) по результатам преподавания им соответствующего предмета в университетах и технических колледжах Индии. Как мы знаем, полупроводниковая промышленность Индии в тот момент практически отсутствовала, да и в настоящий момент ее уровень весьма далек от уровня индустриально развитых стран мира. В переводе на русский язык под назва-

нием «Основы силовой электроники» эта книга была в 2005 г. опубликована издательством «Техносфера» и, в связи с актуальностью тематики, неоднократно переиздавалась (следует отметить, что в Индии после 2005 г. она больше не издавалась). При сравнительно небольшом объеме книги (280 стр.) автору удалось в достаточно популярной форме изложить физические принципы работы основных известных на тот момент времени приборов силовой электроники (транзисторов, тиристоров, переключающих схем, выпрямителей, инверторов, частотных преобразователей) и привести известные, самые простейшие электрические схемы их возможных применений в электротехнических устройствах.

Конечно, на момент написания этой «простой» и достаточно популярной книги просто не существовало еще такой элементной базы, которая бы позволяла использовать рассматриваемые полупроводниковые приборы в автомобильных электронных устройствах управления, в осветительной технике, в устройствах управления систем преобразования энергии и других сферах применения, которые сегодня стремительно развиваются. Конечно, там не представлены и микросхемы силовой электроники по той причине, что тогда их просто не было.

Авторы представляемой читателю новой книги поставили перед собой достаточно амбициозную задачу — попытаться обобщить многочисленную литературу по этой проблеме (как зарубежную, так и отечественную) и в рамках ограниченного объема этой одной книги рассмотреть как основные физические механизмы и принципы работы собственно элементной базы полупроводниковой силовой электроники (дискретных полупроводниковых приборов и специализированных микросхем), так и дать конкретные детализированные примеры и рекомендации по их практическому применению в составе различных систем и устройств силовой электроники, причем в качестве примеров используемых ППП и ИМС рассматривать в первую очередь микросхемы отечественного производства (хотя в подавляющем большинстве все они имеют зарубежный функциональный аналог, за исключением отдельных случаев). Прежде всего, к таким устройствам относятся системы управления двигателями (вентильными и коллекторными электродвигателями, карбюраторными и дизельными двигателями автомобилей), устройства управления источниками света, импульсными источниками питания и др.

Эта идея возникла в ходе многолетней плодотворной работы авторов над книгой «Основы схемотехники микроэлектронных устройств», которая была задумана как дальнейшее развитие идей и подходов, изложенных в вышедшей в прошлом веке монографии «Искусство схемотехники» — классического учебника по цифровой и аналоговой схемотехнике, (по которой учились и авторы настоящей книги), написанной выдающимися американскими учеными-практиками Paul Horowitz и Winfield Hill, которая за свою необычайную для такого рода изданий популярность среди студентов и инженеров по электронике в 90-х годах прошлого века получила вполне заслуженное неофициальное звание «библия электроники» и до сих пор не сходит с прилавков книжных магазинов. Книга «Основы схемотехники микроэлектронных устройств» была опубликована в 2012 г. в издательстве «Техносфера», и многочисленные отзывы читателей, приходящие до сих пор на адреса электронной почты авторов, подтверждают правильность выбранной ими концепции изложения сложного материала.

Один из основополагающих принципов этой концепции, использованных авторами и при написании представленной читателям книги, - представление как достаточного объема необходимой справочной информации собственно по принципам работы и составу элементной базы силовой электроники, так и, в отличие от классических учебников с изобилием математических выкладок и физических формул, попытаться простым языком, на большом количестве практических примеров, изложить основные аспекты как проектирования и изготовления самих элементов силовой электроники (физические принципы работы, схемотехнические решения, технологии изготовления, корпусные особенности), так и важнейшие аспекты этапов расчета и конструирования основных типов энергосберегающих приборов и устройств на уровне, доступном для понимания даже слабоподготовленным читателем.

Насколько авторам удалось в рамках данной книги реализовать эту концепцию - судить читателям.

В основу книги, кроме обобщенных результатов анализа отечественных и зарубежных литературных источников, результатов собственных исследований, опубликованных ранее в монографиях, патентах и статьях, результатов своей практической деятельности в области проектирования и применения силовых приборов и микросхем, положены материалы лекционных курсов «Схемотехника и технология базовых элементов силовой электроники» и других, много лет читаемых авторами в вузах и академических институтах для студентов, аспирантов, магистрантов и преподавателей по следующим специальностям: 1-41 01 01 «Технология материалов и компонентов электронной техники», 5515002 «Приборостроение»; 5507002 «Электроника и микроэлектроника»; 551102 «Проектирование и технология электронных средств»; 5528002 «Информатика и вычислительная техника»; 2000003 «Электронная техника, радиотехника и связь» и др.

В частности, использованы материалы лекционных курсов и практических занятий, проведенных авторами в период с 2000 по 2012 г. в Белорусском национальном техническом университете, Белорусском государственном университете информатики и радиоэлектроники, использованы также материалы лекций и семинаров для иностранных студентов, магистрантов и инженеров-разработчиков, проведенных авторами в Китае (Северо-восточный институт микроэлектроники), Индии (Институт космических исследований, BHARAT ELECTRONIC, Исследовательский центр Имарат), Вьетнама (Ханойский технический университет), Болгарии. Польше и других странах.

При работе над материалами гл. 6 существенную помощь авторам оказали профессор, д.т.н. Нелаев В.В. и к.т.н. Стемпицкий В.Р., техническое оформление рукописи выполнено Гордиенко С.В.

Авторы благодарят заведующего кафедрой нано- и микроэлектроники Белорусского государственного университета информатики и радиоэлектроники, д.ф-м.н., профессора Борисенко В.Е. и проректора Белорусского национального технического университета, д.т.н., профессора Гусева О.К. за конструктивную критику и полезные предложения по уточнению содержания и структуры построения материала, сделанные в процессе рецензирования данной работы.

Введение

Структура изложения материалов в данной книге направлена на реализацию сформулированной в предисловии концепции изложения сложного материала в максимально упрощенном (но не в ущерб качеству) виде, а именно: представление читателю достаточного, но минимального объема информации о принципах работы, составе и основных технических характеристиках базовых элементов силовой электроники, а также на практических примерах изложить основные аспекты как проектирования и изготовления самих элементов силовой электроники (физические принципы, схемотехнические решения), так и важнейшие аспекты этапов расчета и конструирования основных типов энергосберегающих приборов и устройств (для автоэлектроники, осветительной техники, управления электродвигателями и источниками питания и др.).

Для достижения этой цели материал книги разбит на 6 глав.

В первой, вводной главе, состоящей всего лишь из двух разделов, в очень сжатом виде представлены основные предпосылки возникновения и развития силовой электроники, в первую очередь обусловленные необходимостью снижения энергопотребления и повышения эффективности использования различных видов энергии. Здесь же представлена классификация элементной базы силовой электроники, необходимая для систематизации изложения и более полного понимания читателем содержания последующих глав.

Вторая глава в целом носит обзорный характер, здесь в достаточно сжатом виде, с минимальным использованием математических выкладок и формул рассмотрены принципы работы и типовые конструкции основных, наиболее широко используемых, полупроводниковых приборов силовой электроники. Прежде всего, это силовые полупроводниковые диоды и стабилитроны. Исследованы особенности возникновения и развития лавинного и туннельного (зенеровского) пробоев р-п-переходов, в том числе с привлечением минимального количества формул рассмотрены физические механизмы работы диодов Зенера и диодов Шоттки.

В рамках отдельного параграфа рассмотрены структуры, конструкции и физические механизмы работы основных типов силовых транзисторов (биполярных средней и высокой мощности, каскадов Дарлингтона, полевых транзисторов средней и большой мощности (MOSFET), биполярных транзисторов с изолированным затвором (IGBT) и др.

В конце этой главы рассмотрены принципы работы и особенности практического применения многослойных полупроводниковых структур (тиристоры, динисторы, симисторы) в составе различных устройств силовой электроники.

Третья глава является основной по насыщенности информационным материалом и посвящена анализу работы и особенностям применения интегральных микросхем силовой электроники. Так, здесь детально рассмотрены типовые структуры микросхем для источников питания и приведены типовые, апробированные на практике, детализированные электрические схемы их использования в составе различных источников питания радиоэлектронной и промышленной аппаратуры, приведены эквивалентные электрические схемы и приведены важные для практического применения особенности интегральных выпрямителей напряже-

ния, наиболее широко используемых в известных устройствах преобразования энергии.

Для наиболее популярных микросхем стабилизаторов напряжения приведен анализ схемотехнических решений важнейших составных узлов и блоков (источники опорного напряжения на биполярных и полевых транзисторах), важнейшие особенности схемотехнической реализации мощных выходных каскадов различных микросхем стабилизаторов напряжения, а также схем защиты кристаллов от несанкционированного воздействия повышенного входного напряжения, от превышения допустимой температуры кристалла, от ситуации короткого замыкания в нагрузке и др.

Здесь же рассмотрены основные средства и методы подгонки численных значений параметров этих микросхем, используемые в процессе их промышленного изготовления (электрическая и лазерная подгонка, подгонка путем пережигания).

В отдельный параграф этой главы также выделено рассмотрение типовых структурных схем и принципов работы микросхем, предназначенных для работы в составе сравнительно нового и стремительно развивающегося класса энергосберегающих источников — импульсных источников питания.

Поскольку при построении таких импульсных источников широко используются новые алгоритмы и методы обработки («модуляции») обрабатываемых сигналов, детально анализируются структура и принципы работы так называемых микросхем ШИМ-контроллеров (приборов с использованием так называемого «метода широтно-импульсной модуляции»), в том числе — ШИМ-контроллеров с дополнительной обратной связью по току.

Также для нового класса микросхем стабилизаторов — импульсных стабилизаторов напряжения (иначе часто называемых DC-DC преобразователями) рассмотрены типовые схемотехнические решения повышающих, понижающих и инвертирующих импульсных стабилизаторов с анализом их как преимуществ, так и недостатков по сравнению с до сих пор широко используемыми линейными стабилизаторами напряжения.

Здесь же детально рассмотрены принцип работы и основные схемотехнические решения специализированных микросхем — корректоров фактора мощности (коэффициента мощности). Приведена номенклатура наиболее широко используемых таких отечественных ИМС управления импульсными источниками питания и стабилизаторами.

Для более глубокого понимания принципов работы серии микросхем управления электродвигателями в четвертой главе приведены и описаны простейшие конструкции и структуры различных электродвигателей, в том числе шаговых, вентильных (постоянного и переменного тока), а также электродвигателей переменного тока.

Рассмотрены типовые ИМС, предназначенные для управления этими конкретными типами двигателей и приведены конкретные примеры конструирования законченных электронных систем и блоков управления этими двигателями с практическими рекомендациями по выбору необходимых внешних навесных элементов, позволяющих адаптировать их работу применительно к конкретным условиям эксплуатации.

В специальном разделе, посвященном изучению ИМС для управления осветительным оборудованием, предварительно представлена информация об истории возникновения наиболее широко используемых видов источников света, приведены их основные технические характеристики, а затем для каждого вида этих источников приведены описания соответствующих конкретных микросхем и детализированных электрических схем их включения (для ламп накаливания, газоразрядных и светодиодных источников света и светильников на их основе).

В начале раздела, посвященного изучению силовых микросхем для автомобильной электроники, наиболее интересного для читателей-автолюбителей, приведены характеристики и классификации основного электрооборудования и электронных систем управления автомобилем (двигателем, освещением салона, стеклоподъемниками, «дворниками», омывателями лобового стекла, тормозами, поворотными сигналами и т.д.).

Наиболее детально на конкретных примерах рассмотрены структуры, электрические схемы и особенности работы применяемых в этих системах специализированных микросхем и полупроводниковых приборов для бортовых сетей электропитания и систем управления двигателями внутреннего сгорания.

Завершает третью главу раздел, посвященный анализу структур и принципов работы драйверов управления MOSFET и IGBT (управление от КМОП-логики, при помощи эмиттерных повторителей, с разделением цепей заряда и разряда входной емкости, управление полумостом — стойкой MOSFET и IGBT и др.).

Если предыдущие главы ориентированы на широкий круг читателей с различным уровнем подготовки, то последующие главы книги в первую очередь ориентированы на студентов и специалистов в области проектирования и организации производства полупроводниковых изделий.

В четвертой главе в сжатом, конспективном виде рассмотрены основы современных технологий изготовления всех вышерассмотренных классов полупроводниковых приборов и микросхем силовой электроники (биполярной, КМОП, комбинированной БиКМОП, высоковольтной ДМОП, КДМОП, БиКДМОП).

Приведены весьма детализированные эскизы типовых конечных полупроводниковых структур элементной базы силовой электроники для каждого из вышеперечисленных типов технологий с указанием конкретных элементов активной структуры (вертикальных и горизонтальных n-p-n и p-n-p транзисторов, резисторов, встроенных в кристалл диодов и емкостей), изолирующих и защитных областей полупроводника и диэлектрика.

Очень кратко описаны основные технологические маршруты изготовления каждой из рассматриваемых структур (биполярных, КМОП, БиКМОП и т.д.), последовательности выполняемых стандартных технологических операций (окисление, диффузия примеси, фотолитография, ионное легирование и т.д.) без детализации технологических режимов их реализации (доз легирования, температур и т.д.).

Приводятся достоинства и недостатки микросхем силовой электроники, реализованных по различным рассмотренным выше технологиям изготовления, знание которых всегда важно разработчику силового устройства для правильного

выбора микросхемы, предназначенной для будущей работы в конкретных, заданных разработчику прибора условиях эксплуатации.

Пятая глава посвящена рассмотрению наиболее часто встречающихся на практике задач статистического анализа и оптимизации основных технических параметров микросхем силовой электроники в сквозной цепи «проектирование микросхемы — изготовление — проектирование прибора». В основу алгоритмов решения этих задач положены теоретические исследования одного из основоположников — профессора кафедры нано- и микроэлектроники Белорусского государственного университета информатики и микроэлектроники, д.т.н. Нелаева В.В. и его талантливого ученика к.т.н. Стемпицкого В.Р.

Рассмотрены основные задачи статистического анализа и оптимизации параметров микросхем в условиях их серийного производства. Описан рекомендуемый структурный иерархический подход к задаче статистического анализа силовых микросхем, включающий как использование понятий «подуровни» статистического моделирования прибора, так и расширенное моделирование на уровне проектируемой системы.

Шестая глава посвящена одной из основных общих проблем элементной базы силовой электроники — проблеме отвода тепла и способам уменьшения величины теплового сопротивления силовых дискретных полупроводниковых приборов. Здесь поясняется физическая сущность важнейшего для монтажа параметра — теплового сопротивления корпуса прибора, приводятся основные математические выражения и формулы для его расчета, методики экспериментальных измерений фактических численных значений для наиболее часто встречающихся на практике случаев и анализируются достоинства и недостатки известных способов уменьшения его величины.

Здесь же рассмотрены основные типы корпусов, используемых для сборки мощных полупроводниковых приборов и микросхем силовой электроники. Рассмотрены основные пути миниатюризации этих корпусов и особенности используемых инженерами-практиками технических решений по отводу тепла от кристаллов как для «малых» корпусов, так и для корпусов, предназначенных для случая поверхностного монтажа на платы. Учитывая практическую важность вопроса, в рамках отдельного параграфа приведены особенности известных методов измерений тепловых сопротивлений корпусов и представлены экспериментальные численные их значения для типовых случаев.

ГЛАВА І

ЭЛЕМЕНТНАЯ БАЗА СИЛОВОЙ ЭЛЕКТРОНИКИ

1.1. Проблемы преобразования электрической энергии

Вследствие стремительного прогресса в развитии технологии производства полупроводниковых интегральных схем и дискретных приборов, в частности — перехода к субмикронным и наноразмерным технологиям и появления высоковольтных технологий изготовления мощных силовых приборов, возникают новые задачи в области проектирования и применения микроэлектронных устройств, реализованных на основе этих технологий. Появившиеся в результате этого прогресса сложнофункциональные универсальные и специализированные микропроцессоры и микроконтроллеры нашли широкое применение в компьютерных, телекоммуникационных, навигационных, информационных технологиях. Громадные интеллектуальные ресурсы ученых, разработчиков и производственников были направлены на развитие в первую очередь именно этих сфер применения.

В то же время человечество подошло вплотную к новой проблеме, также требующей концентрации усилий ученых и практиков на разрешении диалектического противоречия, обусловленного, с одной стороны, постоянно увеличивающимся потреблением энергии во всех сферах жизнедеятельности человека, а с другой — очевидной ограниченностью энергетических ресурсов нашей родной планеты.

Во всем мире наблюдается проблема дефицита природных ресурсов, используемых для получения и преобразования электрической энергии. Очевидные признаки грядущего энергетического кризиса в той или иной степени затрагивают все индустриально развитые страны. Одним из главных путей решения этой проблемы является развитие энергосберегающих технологий и создания энергосберегающих изделий на их основе.

При этом на передний план выходит задача существенного снижения потерь электрической энергии в технологической цепи «производство — преобразование — использование» электрической энергии [1]. И здесь одну из важнейших задач призвана решить силовая электроника. Силовая электроника как самостоятельное направление научно-технического прогресса в настоящее время ориентирована на решение сложных задач эффективного управления, регулирования процессами преобразования электрической энергии в самых разных областях науки и техники.

В табл. 1.1 в обобщенном виде представлены источники поступления энергии, виды используемой энергии и типы промышленных предприятий (электростанций), которые осуществляют преобразование соответствующего вида энергии в электрическую энергию и ее передачу потребителям.

Источник энергии	Вид энергии	Электростанции	
Солнечное излучение	Прямая энергия излучения	Солнечные электростанции	
	Преобразованная энергия Солнца		
	Энергия рек	Гидроэлектростанции	
	Энергия ветра	Ветровые электростанции	
	Энергия волн	Электростанции, использующие энергию волн	
	Энергия ископаемых ресурсов (угля, нефти, природного газа и др.), биотопливо	Теплоэлектростанции	
Гравитация Луны	Энергия приливов и отливов	Приливные электростанции	
Радиоактивные вещества	Энергия радиоактивного распада	Атомные электростанции	
Геотермальная энергия	Тепло недр Земли	Геотермальные станции	

Таблица 1.1. Основные виды и источники энергии

Таблица 1.2. Прогноз исчерпания ресурсов Земли [2]

Вещество	Запасы в год	% роста	Время исчерпания, лет
Уголь	5 · 10¹² т	4,1	150–200
Нефть	4,5 · 10 ¹¹ т	4,0	40–50
Природный газ	3 · 10 ¹³ м ³	4,7	50–70
Урановая руда			85

Время исчерпания ресурсов вычислено в предположении, что в течение будущих десятилетий разведанные ресурсы вырастут в 5 раз по сравнению с данными, приведенными в таблице.

В табл. 1.2 [2] представлены прогнозные данные, характеризующие запасы основных ресурсов (уголь, нефть, природный газ, урановая руда), средний годовой процент увеличения их потребления в масштабах всей планеты и прогнозируемое время их исчерпания.

Прежде чем переходить к изложению последующего материала, следует отметить, что как само название направления («силовая электроника»), так и терминология в этой области еще находятся в стадии формирования. Достаточно напомнить, что даже в широко используемой в Интернете Википедии по категории «силовая электроника» нет общепринятой «основной статьи», хотя в то же время там содержатся только две «подкатегории»: «источники питания» и «системы управления электродвигателями», в которых имеются ссылки на более трех десятков страниц, где содержатся характеристики таких терминов, как «электрический привод», «тиристор», «выпрямитель», «тиристорный регулятор мощности», IGBT и другие термины.

Силовая электроника как научно-техническое направление сформировалась для эффективного регулирования преобразованием электрической энергии. В общем виде (табл. 1.3) все известные системы преобразования электрической энергии можно представить в виде структуры, содержащей следующие блоки: блок реализации алгоритмов управления, блок сопряжения, выходной блок преобразования

и управления исполнительным устройством. Микросхемы и дискретные приборы, выполняющие функции этих блоков систем преобразования электрической энергии, относятся к элементной базе силовой электроники, описанию структур и особенностей применения которых в реальных приборах и системах посвящены последующие главы этой книги.

Таблица 1.3. Типовая структура системы преобразования электрической энергии

Система преобразования электрической энергии					
Блок реализации	Блок	Выходной блок преобразования			
алгоритмов управления	сопряжения	и управления исполнительным устройством			

Более двух третей всей вырабатываемой в мире электроэнергии потребляется в преобразованном виде.

Согласно данным американской фирмы International Rectifier, одного из крупнейших изготовителей элементов силовой электроники, больше всего электрической энергии в мире потребляют электродвигатели (55%), на втором месте — осветительные приборы (21%). Мощные источники питания для всех типов электронного оборудования (средств связи, компьютерного оборудования и других потребителей) потребляют всего 6% электрической энергии, а на остальных потребителей приходится оставшиеся лишь 18%.

Используя процесс преобразования электроэнергии, позволяющий перейти от устаревших ламп накаливания к электронным флуоресцентным лампам, можно вдвое снизить потребление энергии. Флуоресцентные лампы потребляют на 75% энергии меньше, чем лампы накаливания, при одном и том же уровне освещенности. По другим источникам информации, замена традиционных ламп накаливания «сверхяркими» светодиодами с питанием от специальных драйверов — преобразователей электроэнергии позволит сберечь около 20% всей потребляемой мировой электроэнергии.

Около 40% потребляемой энергии можно сэкономить за счет замены «старых» нерегулируемых двигателей на электрический привод с электронным регулированием.

В большинстве находящихся в эксплуатации типовых холодильников в настоящее время для управления работой основного энергопотребляющего агрегата — компрессора используется нерегулируемый электродвигатель. В настоящее время ведущие производители холодильников уже поставляют на мировой рынок компрессоры с изменяющейся скоростью работы электродвигателя компрессора. Для типовых бытовых холодильников с объемом 20 куб. футов (566 куб. дм) это означает снижение домашнего потребления энергии более чем на 70%.

Полупроводниковые устройства преобразования энергии позволяют также существенно уменьшить объемы и габаритные размеры радиоэлектронных бытовых и промышленных приборов, снизить требования к их охлаждению, исключить от 5 до 10% потерь энергии в мощных источниках питания для компьютеров, серверов, сетей и телекоммуникационного оборудования.

Таким образом, развитие силовой электроники является одним из несомненных достижений научно-технического прогресса, что заставляет разработчиков

различных радиоэлектронных устройств активно изучать и использовать элементную базу силовой электроники в своих изделиях.

В этой связи следует отметить, что требования, предъявляемые, например, к современной радиоэлектронной аппаратуре, которыми руководствовались разработчики 90-х годов прошлого века, подверглись весьма существенному пересмотру и изменениям. Теперь особое внимание уделяется не только их функциональным возможностям и характеристикам, но и массогабаритным показателям и оптимизации расхода электроэнергии, что крайне существенно при работе от аккумуляторов. Подверглись существенному пересмотру и подходы к проектированию систем питания для аппаратуры радиоэлектронных комплексов нового поколения как гражданского, так и военного (наземного, морского, авиационного и космического) применений, как неперемещаемой (стационарной), так и подвижной (мобильной).

Чтобы читатель мог лучше ориентироваться при изучении материала последующих глав, прежде всего, необходимо рассмотреть сложившуюся общепринятую классификацию элементной базы силовой электроники.

1.2. Классификация элементной базы силовой электроники

В общем случае все многообразие микроэлектронных устройств силовой электроники можно разделить на две группы — дискретные полупроводниковые приборы и интегральные микросхемы (ИМС) для силовой электроники (рис. 1.1).

В свою очередь, силовые дискретные полупроводниковые приборы подразделяются на силовые диоды (диоды Шоттки, диоды Зенера, стабилитроны), силовые дискретные транзисторы (биполярные, Дарлингтона, MOSFET, IGBT, интеллектуальные MOSFET), многопереходные структуры (тиристоры, динисторы, симисторы) и мощные силовые модули на основе IGBT и тиристорно-диодных сборок.

Детальному рассмотрению каждого из этих типов силовых элементов посвящены гл. 3—5, а в этом разделе отметим основные их отличительные признаки.

Так, дискретные полевые транзисторы с изолированным затвором типа MOSFET и их интегрированные сборки предназначены в основном для использования в корректорах коэффициента мощности (PEC), в полумостовых или мостовых структурах высокочастотных (BЧ) инверторов и преобразователей энергии. Их отличительной характеристикой является возможность реализации на основе MOSFET законченных систем и источников питания большой и сверхбольшой мощности, которые могут работать на частотах преобразования 100—300 кГц и более с удельной мощностью до 700—1000 Вт/дм³.

Силовые модули, в свою очередь, подразделяются на универсальные и специализированные. Среди универсальных модулей следует выделить интегрированные силовые модули (ИСМ или IРМ) на основе IGBT, которые широко используются в системах управления электроприводом в одно- или трехфазных электросетях. Они могут включать в себя: выпрямительные мосты по соответствующей схеме, содержащие от двух до семи модулей IGBT, прерыватели (чопперы) на IGBT и мощные пусковые терморезисторы.

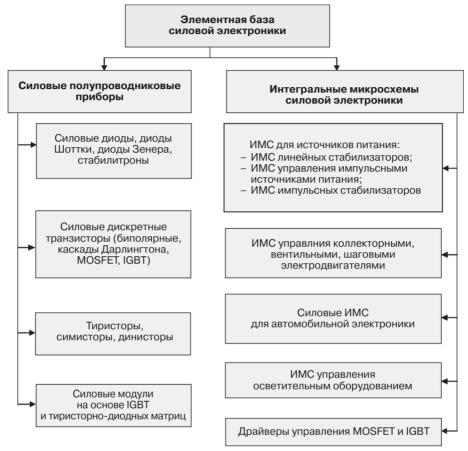


Рис. 1.1. Классификация элементной базы силовой электроники

На таких универсальных силовых модулях создаются различные модификации систем управления: однофазный выпрямитель /чоппер/инвертор, однофазный выпрямитель/инвертор, трехфазный выпрямитель/инвертор, трехфазный выпрямитель/чоппер/ инвертор и др.

Специализированные силовые модули проектируются обычно на очень большую мощность и имеют достаточно сложную внутреннюю организацию. Так, стандартный трехфазный инвертор типа SK/POWER фирмы SEMIKRON мощностью до 250 кВт широко используется в электрическом или гибридном автотранспорте мировых фирм — производителей автомобильной техники и содержит в своем составе следующие блоки:

- силовую IGBT-секцию:
- датчики напряжения, тока и температуры;
- устройства управления и защиты;
- перепрограммируемый цифровой сигнальный микропроцессор;
- фильтр электромагнитных помех;
- радиатор жидкостного охлаждения и др.

Одной из разновидностей этого направления также являются силовые модули, конструктивно выполненные в виде последовательного соединения из двух IGBT и предназначенные для применения в системах управления электроприводом, сверхмощных импульсных источниках вторичного электропитания и т.п.

Запираемые тиристоры (GTO) в основном используются в тяговых электроприводах большой мощности [3]. Наибольшее применение они находят в случае совместного использования со встроенными микросхемами управления (IGBT) на напряжениях от 4500 до 6000 В и токе от 400 до 2700 А.

Для работы в условиях высокого уровня электромагнитных помех, возникающих в процессе коммутации (это энергосберегающие преобразователи для линий передачи постоянного тока высокого напряжения типа HVDC, компенсаторы реактивной мощности типа SVC), используются мощные высоковольтные тиристоры с прямым управлением светом по оптическому кабелю (так называемые Light Tuiggered Thyristors — LTT).

Самостоятельное направление развития «силовые тиристоры» — диодные модули на напряжения от 800 до 1600 В и токи до 90 А. Обычно в их состав включают последовательно соединенные как минимум два мощных тиристора, которые в соответствии с алгоритмом управления встроенного контроллера можно объединять для организации схемы встречно-параллельного включения.

Кремниевые диоды Шоттки используются как индивидуально, так и в составе силовых сборок на напряжение от 35 до 50 В, причем в составе такого силового модуля обычно используются как минимум два диода Шоттки, которые также могут быть использованы в различных комбинациях их соединений.

Наиболее широко в энергосберегающей аппаратуре используются стандартные выпрямительные кремниевые силовые диоды и силовые модули на их основе.

Применяя эти модули в сетевых выпрямителях для сверхмощных блоков питания, можно существенно снизить потери мощности в самом выпрямительном узле, а также повысить КПД всего блока питания.

В свою очередь, все интегральные микросхемы (ИМС) для силовой электроники в зависимости от их назначения и особенностей применения можно разделить на пять основных групп:

- ИМС для источников питания (наиболее значимая по составу номенклатуры серия ИМС);
- ИМС для управления различными электродвигателями (коллекторными, шаговыми, вентильными);
- силовые ИМС для автомобильной электроники (их также используют в электронных системах управления сельскохозяйственной техникой — в тракторах, зерно- и кормоуборочных комбайнах, грузовых и карьерных автомобилях, автопогрузчиках, мотоциклах и пр.);
- ИМС для управления осветительным оборудованием (бытовыми и промышленными лампами дневного света, мощными промышленными светильниками, светильниками для освещения улиц и т.п.);
- ИМС управления мощными силовыми дискретными полупроводниковыми приборами (MOSFET, IGBT и модули на их основе).