

<u>РЕДАКЦИОННЫЙ</u> С О В Е Т	ИЗДАТЕЛЬСТВО МОСКОВСКОГО ГОСУДАРСТВЕННОГО ГОРНОГО УНИВЕРСИТЕТА
Председатель Л.А. ПУЧКОВ	президент МГГУ, члкорр. РАН
Зам. председателя Л.Х. ГИТИС	директор Издательства МГГУ
Члены редсовета И.В. ДЕМЕНТЬЕВ	академик РАЕН
Б.А. КАРТОЗИЯ	академик РАЕН академик РАЕН
А.В. КОРЧАК ————————————————————————————————————	академик МАН ВШ академик РАН
В.И. ОСИПОВ В.Л. ПЕТРОВ	академик РАН академик МАН ВШ
Э.М. СОКОЛОВ	академик МАН ВШ
В.А. ЧАНТУРИЯ	академик РАН академик РАН

Е.И. ШЕМЯКИН

академик РАН

И.М. ЯЛТАНЕЦ Н.И. ЛЕВАНОВ А.Э. ТУХЕЛЬ В.М. ДЯТЛОВ

ПЕРЕРАБОТКА ГОРНЫХ ПОРОД С ИСПОЛЬЗОВАНИЕМ СРЕДСТВ ГИЛРО-МЕХАНИЗАЦИИ

Под редакцией профессора И.М. Ялтанца

Допущено Учебно-методическим советом Московского государственного горного университета в качестве учебного пособия для студентов высших учебных заведений, обучающихся по специальности «Открытые горные работы» направления подготовки «Горное дело»

MOCKBA ИЗДАТЕЛЬСТВО московского государственного горного университета 2008

ТЕОРИЯ И ПРАКТИКА ОТКРЫТЫХ ГОРНЫХ и строительных работ УДК 622.362 ББК 33.342 Я 52

Книга соответствует «Гигиеническим требованиям к изданиям книжным для взрослых. СанПиН 1.2.1253—03», утвержденным Главным государственным санитарным врачом России 30 марта 2003 г. (ОСТ 29.124—94). Санитарно-эпидемиологическое заключение Федеральной службы по надзору в сфере защиты прав потребителей № 77.99.60.953.Д.008501.07.07

Экспертиза проведена Учебно-методическим советом Московского государственного горного университета (протокол № 15 заседания Учебнометодического совета МГГУ от 10.04.06)

Рецензенты:

- д-р техн. наук, проф. В.И. Шелоганов (Московский государственный горный университет);
- д-р техн. наук, проф. Н.И. Бабичев (ЗАО НПЦ «Геотехнология»)

Ялтанец И.М., Тухель А.Э., Леванов Н.И., Дятлов В.М.

Я 52 Переработка горных пород с использованием средств гидромеханизации: Учебное пособие. — М.: Издательство Московского государственного горного университета, 2008. — 318 с.: ил.

ISBN 978-5-7418-0526-8 (в пер.)

Изложены данные о строительных горных породах, разрабатываемых и перерабатываемых средствами гидромеханизации. Рассмотрены основные гидравлические перерабатывающие аппараты и даны их характеристики. Приведены технические схемы переработки горной массы, а также методики расчета показателей процессов переработки и технико-экономических показателей проекта. В приложении даны решения горных задач.

Для студентов высших учебных заведений, обучающихся по специальности «Открытые горные работы» направления подготовки «Горное дело».

УДК 622.362 ББК 33.342

ISBN 978-5-7418-0526-8

- © И.М. Ялтанец, А.Э. Тухель, Н.И. Леванов, В.М. Дятлов, 2008
- © Издательство МГГУ, 2008
- © Дизайн книги. Издательство МГГУ, 2008

ПРЕДИСЛОВИЕ

Ведущее место в добыче полезных ископаемых принадлежит открытому способу разработки — наиболее экономичному, производительному и безопасному. Одним из направлений повышения эффективности открытой разработки месторождений является применение технологии с использованием средств гидромеханизации, в частности, гидротранспортирование вскрышных пород на гидроотвалы, а полезного ископаемого — потребителю.

На обводненных песчаных и песчано-гравийных месторождениях использование средств гидромеханизации — единственный способ ведения вскрышных и добычных работ. При разработке таких месторождений, как правило, используют плавучие землесосные снаряды. Экономические показатели применения земснарядов при разработке песчаных и песчано-гравийных месторождений значительно выше показателей использования других методов, так как в этом случае поток воды производит попутное обогащение материала, промывку и очистку его от глинистых частиц, а также гидроклассификацию и фракционирование.

Следует отметить, что экономические показатели эксплуатации песчано-гравийных месторождений гидромеханизированным способом в значительной степени определяются объемом, номенклатурой и качеством конечных продуктов гидравлической переработки горной массы: щебня, гравия, песка. И здесь особенно важны правильный выбор гидравлического перерабатывающего аппарата, обоснование технологических схем переработки и расчет основных показателей процессов переработки. Именно

они, в конечном счете, определяют эффективность технологии переработки и получение заданных объемов отдельных видов продукции требуемого качества.

Содержание данного учебного пособия соответствует одному из разделов новой учебной программы дисциплины «Гидромеханизированные и подводные горные работы».

Авторы книги выражают признательность горным инженерам Н.И. Исаевой и М.Г. Кривохлябину за оказанную помощь при выполнении графического материала и практических расчетов.

СТРОИТЕЛЬНЫЕ ГОРНЫЕ ПОРОДЫ И ОБЛАСТИ ИХ ИСПОЛЬЗОВАНИЯ

- 1.1. Строительные горные породы, добываемые средствами гидромеханизации
- 1.2. Типы песчаных и песчано-гравийных месторождений
- 1.3. Физико-механические (технические) свойства пород, разрабатываемых средствами гидромеханизации

1.1. СТРОИТЕЛЬНЫЕ ГОРНЫЕ ПОРОДЫ, ДОБЫВАЕМЫЕ СРЕДСТВАМИ ГИДРОМЕХАНИЗАЦИИ

Полезные ископаемые, используемые в строительной отрасли в том или ином их виде, по определению академика АН СССР В.В. Ржевского, относятся к строительным горным породам. К строительным горным породам, которые разрабатываются и перерабатываются (обогащаются) средствами гидромеханизации, относятся прежде всего пески и песчано-гравийные смеси. Месторождения этих полезных ископаемых в Российской Федерации в основном полностью или частично обводнены и, как правило, отрабатываются плавучими землесосными снарядами. Песок и гравий имеют самые различные области применения, в частности:

области применения

песок

кладочные и штукатурные растворы, бетоны, бетонные и железобетонные изделия, щебень для различного назначения, площадки для промышленного и гражданского строительства, обустройство нефтяных месторождений, насыпи автомобильных и железных дорог, стекольная промышленность и т.д.

гравий

бетонные и железобетонные изделия, бетон, покрытия автомобильных и железных дорог, асфальтовый бетон, дренажные сооружения и т.д.

1.2. ТИПЫ ПЕСЧАНЫХ И ПЕСЧАНО-ГРАВИЙНЫХ МЕСТОРОЖДЕНИЙ

Образование месторождений гравия и песка связано с процессами выветривания и разрушения изверженных, метаморфических и осадочных горных пород, с переносом и накоплением продуктов их разрушения. При этом процессы дезинтеграции и химического разложения различных горных пород приводят к образованию обломочного материала разного минералого-петрографического состава. Обломочный материал имеет разнообразную форму и размеры, которые изменяются в процессе дальнейшего разрушения. Крупные обломки остаются вблизи материнской породы. Обломки меньших размеров, частицы породы и зерна минералов силой движения ветра, воды и льда перемещаются на различные расстояния.

В зависимости от агента, транспортирующего обломки горных пород, различают четыре типа гравийных и песчаных месторождений [1]:

- 1) месторождения, связанные с деятельностью водных потоков:
 - речные аллювиальные и древнеаллювиальные;
 - пролювиальные конусы выноса;
 - 2) месторождения ледникового происхождения:
 - флювиогляциальные;
 - месторождения собственно ледникового происхождения;
- 3) месторождения морского и озерного происхождения;
- 4) месторождения, связанные с деятельностью ветра (эолового происхождения).

В аллювиальных отложениях равнины рек преимущественно распространены обломки небольших размеров: разнозернистые пески, глинистые и илистые образования, редко гравий и галька. Аллювиальные месторождения характеризуются изменчивым гранулометрическим составом и значительными колебаниями в содержании различных фракций. Минералого-петрографический состав гравийных месторождений весьма разнообразен. Валуны, галечник и гравий состоят из различных магматических, метаморфических и осадочных пород.

Древнеаллювиальные месторождения приурочены к отложениям надпойменных террас. Древние террасы (их обычно насчитывается несколько) различаются по высоте расположения над уровнем реки.

Песчаным и гравийным месторождениям присущи линзо- и пластообразные формы. В полезной толще часто содержатся линзы глин, суглинков и глинистых песков, а также обломков коренных подстилающих пород. В кровле полезной толщи часто встречаются углубления, заполненные супесями, суглинками и глинами. Полезная толща частично или полностью обводнена. Мощность песчаных и гравийных залежей изменяется в широких пределах. Обычно она составляет несколько метров, но иногда достигает и десятков метров (Забайкалье, Северный Кавказ).

Для месторождений гравия и песка современного алловиального происхождения обычно характерна небольшая мощность покрывающих (вскрышных) пород. Эти породы чаще всего представлены мелко- и тонкозернистыми песками, супесями, суглинками и глинами; к этой же толще относится и растительный слой.

Пролювиальные песчано-гравийные месторождения приурочены к выходам временных потоков из горных ущелий на склоны к предгорным равнинам. Запасы обломочного материала этих месторождений огромны и периодически пополняются, мощность залежей достигает нескольких десятков метров.

Гранулометрический (зерновой; одинаково часто встречается и тот, и другой термин) состав обломочного материала изменяется на небольших расстояниях по площади и глубине. Петрографический состав весьма пестрый и обусловлен литологическим строением горных хребтов, из ущелий которых происходит вынос обломочного материала. Месторождения данного типа распространены в горных областях с сухим и жарким климатом.

Месторождения *педникового* происхождения представлены озами, камами, зандровыми полями, моренными холмами, холмообразными грядами конечных морен, иногда друмлинами.

Озы — это вытянутые узкие гряды. Протяженность их изменяется от нескольких сотен метров до нескольких километров, высота 20—30 м, ширина колеблется от 20—30 до 100—200 м. Камы — группы холмов неправильной формы, расположенных без какой-либо закономерности. Зандровые поля образуют преимущественно песчаные (иногда с примесью гравия) равнины. Они обычно расположены южнее конечных морен.

Холмообразные формы аккумуляции обломочного материала широко распространены в районах расположения конечных морен, которые тянутся на значительные расстояния (десятки километров), занимая в ширину от сотен метров до нескольких километров. Высота их 30—50 м, реже 100 м и более.

Конечные морены сложены неотсортированным обломочным материалом, представленным песчаногравийно-валунными фракциями. Площадь отдельных холмов разная, достигает 15—20 га и больше. К холмообразным песчано-гравийным залежам относятся Вяземское, Тучковское и другие месторождения. Друмлинами называются скопления обломочного материала ледникового происхождения в виде удлиненных холмов и гряд эллиптической формы.

К флювиогляциальным относятся озы, камы, зандровые поля, остальные связаны с деятельностью собственно ледникового покрова.

Полезная толща в месторождениях ледникового происхождения имеет обычно линзовидное строение. В ней часто встречаются линзы глин, суглинков и супеси. Мощность полезной толщи изменяется от 2—3 м до 20 м и более. Гранулометрический состав песчано-гравийных месторождений ледникового генезиса характеризуется обломочным материалом различной крупности — от иловато-глинистых частиц до валунов. Содержание гравийногалечниковой фракции нередко превышает 50 %, а валунов — 20 %. Закономерностей в расположении материала по крупности обычно не наблюдается.

Месторождения морского и озерного происхождения связаны с деятельностью современных или древних водных бассейнов. Вблизи источника разрушения горных пород, в прибрежной полосе, обычно откладывается крупнообломочный глыбовый материал. Галечник и гравий с примесью более крупного материала, а также пески откладываются на пологой полосе берегового ската (пляжа).

Наиболее тонкий измельченный материал уносится в море. Большую роль в отложениях современных морей играет органический материал (обломки раковин). Месторождения такого генезиса известны на побережьях Черного, Каспийского, Азовского и других морей. Песчано-гравийные породы, относящие к древнеморским отложениям, залегают на большой глубине и плохо изучены.

Месторождения, связанные с деятельностью ветра (эолового происхождения), обычно являются песчаными. В них преобладают средне-, мелко- и тонкозернистые разности. Наиболее распространенные формы этих месторождений — дюны и барханы. Мощность песчаных скоплений изменяется от 2—3 м до 20 м и более. Для песков эоловых месторождений характерны петрографическая однородность и отсутствие глинистых прослоев.

В группе аллювиальных месторождений выделены подгруппы «намывных» и русловых залежей, имеющие важное промышленное значение и большие перспективы в отношении увеличения запасов гравия и песка.

Безгравийные песчаные месторождения представлены чаще всего разнозернистыми песками, часто с преобладанием средне- и мелкозернистых разностей. Песчаные месторождения с гранулометрическим составом, в котором более 50 % составляют фракции размером 3—1 мм (крупнозернистые пески) и 1—0,5 мм (среднезернистые пески), встречаются редко. На территории России наиболее широко распространены песчано-гравийные месторождения аллювиального происхождения. Небольшая глубина залегания этого типа месторождений от поверхности облегчает ввод их в эксплуатацию.

Гравийные и песчаные месторождения ледникового происхождения по площади распространения находятся на втором месте. Территория их распространения охватывает северную, северо-западную и центральную области Европейской части России, частично Сибирь, а также высокогорные районы.

1.3. ФИЗИКО-МЕХАНИЧЕСКИЕ (ТЕХНИЧЕСКИЕ) СВОЙСТВА ПОРОД, РАЗРАБАТЫВАЕМЫХ СРЕДСТВАМИ ГИДРОМЕХАНИЗАЦИИ

На эффективность разработки грунтов способом гидромеханизации влияют их физико-механические свойства. В зависимости от технологического процесса гидромеханизированной разработки необходимо учитывать различные физико-механические свойства грунтов [2, 5]. Приведем их.

Технологический процесс Свойства грунтов, учитываемые при их гидравлической разработке разработки Размыв грунта гидромо- Плотность, прочность на раздавливание, коэффициент сцепления, угол внутренниторами него трения, размокаемость, пластичность, гранулометрический состав, коэффициент фильтрации, пористость Разработка грунта зем-Гранулометрический состав, плотность, коэффициент сцепления, угол внутреннего снарядами трения, пластичность, прилипаемость, форма частиц, окатанность, засоренность инородными телами (корнями растений и т.д.)

Гидротранспортирование	Гранулометриче	ский сост	ав, пло	отность,
грунта	гидравлическая	крупность,	форма	частиц,

гидравлическая крупность, форма частиц, измельчаемость при гидравлическом транспортировании, абразивность, окатан-

Намыв сооружений и укладка грунта в отвалы

Гранулометрический состав, водоотдача, водоудерживающая способность, гидравлическая крупность, плотность, коэффициент фильтрации, угол внутреннего трения, коэффициент сцепления, угол откоса при намыве, набухание

Попутное обогащение Те же свойства, что и при намыве грунта

> гидромониторами, а также измельчаемость при гидравлическом транспортировании.

Гранулометрическим (зерновым) составом грунта называют относительное содержание по массе фракций грунта различной крупности, выраженное в процентах к общей массе сухого грунта. Гранулометрическая фракция — это группа частиц (зерен) грунта, близких по размерам и свойствам.

Дадим наиболее распространенную классификацию грунтов по гранулометрическому составу, в которой учитываются следующие четыре основные фракции, входящие в состав большинства грунтов.

Фракции	Размер частиц, мм
Гравийная	Крупнее 2
Песчаная	От 2 до 0,05
Пылеватая	От 0,05 до 0,005
Гпинистая	Менее 0 005

Размеры выделяемых фракций зависят от состава и назначения грунта.

При определении гранулометрического состава грунтов, используемых для намыва земляных сооружений, должны быть выделены определенные фракции (СНиП III-8—76).

Грунты	Фракция, мм
Глинистые частицы	Менее 0,005
Пылеватые частицы	0,0050,05
в том числе пыль:	
мелкая	0,0050,01
крупная	0,010,05
Песчаные частицы:	
тонкие (пылеватые)	0,050,1
мелкие	0,10,25
средней крупности	0,250,5
крупные	0,51; 12
Гравийные зерна:	
мелкие	25
средние	510
крупные	1020
Галька:	
мелкая	2040
средняя	4060
крупная	
очень крупная	100150;
	150200
Валуны	Более 200

Средневзвешенный гранулометрический состав грунта по фракциям может быть представлен в определенной форме (табл. 1.1), а также изображен графически в виде суммарной кривой или кривой неоднородности в полулогарифмическом масштабе (рис. 1.1).

Форма для регистрации средневзвешенного гранулометрического состава грунта

Размер	Ме-	0,005	0,05	0,1	0,25	0,5	2	5	10	20	40	60	100	150	Бо-	Bce-
частиц	нее														лее	го
фрак-	0,005	0,05	0,1	0,25	0,5	2	5	10	20	40	60	100	150	200	200	
ций, мм																
Содер-	•••															100
жание	İ	1	i	•	l	1									ľ	
фрак-]	1	ļ	ĺ								
ций, %					1											
от мас-														l		
сы су-											l		1	1		
хого	Ì									}	i					
грунта		ļ		1						1	!		}			[

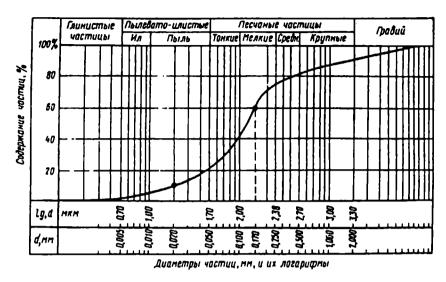


Рис. 1.1. График гранулометрического (зернового) состава грунта в полулогарифмическом масштабе

Плотность выражает отношение массы вещества к занимаемому им объему (г/см³, кг/м³, т/м³). Плотность грунта $\gamma_{\rm rp}$ — это отношение общей массы грунта $m_{\rm rp}$ (включая массу воды в его порах) в естественном состоянии к занимаемому этим грунтом объему $V_{\rm rp}$ или масса единицы объема грунта ненарушенной структуры:

$$\gamma_{\rm rp} = m_{\rm rp} / V_{\rm rp}. \tag{1.1}$$

Этим термином заменен ранее применявшийся термин «объемная масса влажного грунта в естественном состоянии».

Плотность грунта непостоянна и зависит от условий естественного залегания (влажность, количество воды в порах и т.д.). Плотность сухого грунта $\gamma_{\rm rp}^{\rm c}$ — это отношение массы сухого грунта $m_{\rm tb}$ (исключая массу воды в его порах) к занимаемому этим грунтом объему $V_{\rm rp}$ (включая

имеющиеся в этом грунте поры) или масса твердой части грунта в единице его объема ненарушенной структуры, т.е.:

$$\gamma_{\rm rp}^{\rm c} = m_{\rm TB}/V_{\rm rp}; \quad \gamma_{\rm rp}^{\rm c} = \gamma_{\rm rp}/(1+0.01W),$$
 (1.2)

где W — природная влажность грунта, %.

Этот термин заменяет применявшийся ранее термин «объемная масса скелета грунта».

Плотность частиц грунта $\gamma_{\text{тв}}$ — это отношение массы сухого грунта $m_{\text{тв}}$ (исключая массу воды в его порах) к объему твердой части этого грунта $V_{\text{тв}}$:

$$\gamma_{\text{TB}} = m_{\text{TB}} / V_{\text{TB}}. \tag{1.3}$$

Данный термин заменяет применявшийся ранее термин «объемная масса минеральной части грунта». Приведем средние значения плотности грунтов в естественном состоянии.

Грунты	Плотность
	ү _{гр} , кг/м³
Грунт растительного слоя	8001200
Торф	800—1200
Чернозем	1200—1300
Ил речной	1800
Песок:	
мокрый	1950
сухой без примесей	1600
с примесью частиц гальки, гравия до 10 %	1650
то же, более 10 %	
бархатистый и дюнный	1600
Гравий сухой	
То же, мокрый	2000
Галечно-гравийно-песчаные грунты при размере	
частиц, мм:	

до 80	1750
свыше 80	1950
свыше 80 с содержанием валунов до 10 %	1950
то же, до 30 %	
то же, до 70 %	
Валунный грунт (содержание частиц крупнее	
200 мм более 50 %)	2500
Щебень при размере частиц, мм:	
до 40	1750
до 150	
Пески, супеси и суглинки при пористости	
более 0,5 % и содержании частиц крупнее 2 мм	
до 10 %	1600
Глины при влажности более 0,5 % и содержании частиц	
крупнее 2 мм до 10 %	1800
Глины при влажности до 0,5 % и содержании	
частиц крупнее 2 мм до 10 %	1850
Пески, супеси, суглинки и глины при:	
влажности до 0,5 % и содержании	
частиц крупнее 2 мм:	
до 35 %	.1800
до 65 %	.1900
более 65 %	.1950
пористости до 0,5 % и содержании частиц	
крупнее 2 мм:	
до 35 %	.2000
до 65 %	.2100
более 65 %	.2300
Супесь:	
пластичная без примесей	.1650
твердая без примесей, а также пластичная	
и твердая с примесью щебня, гальки до 10 %	.1650
пластичная и твердая с примесью щебня, гальки	
более 10 %	.1850
Суглинок:	
мягкопластичный без примесей	.1700
мягкопластичный с примесью частиц щебня	
и гравия до 10 % и тугопластичный	
без примесей	.1750

мягкопластичный с примесью гальки	
более 10 %	1750
тяжелый	
Глина:	
мягко- и тугопластичная без примесей	1800
то же, с примесью гальки и гравия до 10 %	1750
то же, с примесью гальки и гравия более 10 %	1900
полутвердая, твердая	1950
плотная, вязкая	
Лёсс:	
мягкопластичный	
тугопластичный, твердый	1800
Плотность частиц ү _{гр} ,г/см ³ , песчано-глинистых	: грун т ов
Песок	2,66
Супесь	2,7
Суглинок	
Глина	

Выразим плотность частиц грунта $\gamma_{\text{тв}}$ через плотность грунта и коэффициент пористости е:

$$\gamma_{TB} = \gamma_{TD} / (1 - e). \tag{1.4}$$

Для обозначения степени уплотненности грунта, оцениваемой коэффициентом пористости, плотностью сухого грунта и т.д., следует применять термин «плотность сложения грунта».

Удельный вес грунта γ' — отношение веса грунта к занимаемому им объему, H/m^3 . Удельный вес грунта равен произведению плотности грунта $\gamma_{\rm rp}$, $\kappa r/m^3$, на ускорение силы тяжести, H/m^3 , т.е. $\gamma_{\rm rb} = \gamma_{\rm rp} g$. Для характеристики удельного веса грунта, представляющего собой вес единицы объема грунта, используются определенные термины (CH 528—80).

Удельный вес грунта γ_{rp}^{c} , Н/м³ (заменяет ранее применявшийся термин «объемный вес грунта») — отношение веса грунта, включая вес воды в его порах, к занимаемому этим грунтом объему, включая поры:

$$\gamma_{\rm rp}^{\rm c} = \gamma_{\rm rp} g. \tag{1.5}$$

Удельный вес сухого грунта γ_{rp}^c , Н/м³ (заменяет применявшийся ранее термин «объемный вес скелета грунта») — отношение веса сухого грунта ко всему занимаемому этим грунтом объему:

$$\gamma_{\rm ID}^{\rm c'} = \gamma_{\rm ID}^{\rm c} g. \tag{1.6}$$

Удельный вес частиц грунта γ'_{rp} , H/m^3 (заменяет применявшийся ранее термин «удельный вес грунта») — отношение веса сухого грунта к объему твердой части этого грунта:

$$\gamma_{TB}' = \gamma_{TB} g. \tag{1.7}$$

Пористость грунта m — это отношение объема пор (пустот) V_{Π} в грунте к общему объему грунта V_{Π} , %:

$$m = (V_{\rm n} / V_{\rm rp}) \cdot 100 \%;$$
 (1.8)

$$m = (\gamma_{\rm TB} - \gamma_{\rm rp}^{\rm c} / \gamma_{\rm TB}) \cdot 100 \% = (1 - \gamma_{\rm rp}^{\rm c} / \gamma_{\rm TB}) \cdot 100 \%. \tag{1.9}$$

Пористость зависит от гранулометрического состава грунта, формы частиц и плотности их сложения. Чем больше пористость и рыхлость грунта, тем легче он поддается гидравлическому размыву.

Ориентировочные значения пористости т, %, для некоторых грунтов:

Глины	. 35	50
То же, ленточные	. 47	52
То же, коренные, пластичные (юрские,		
майкопские, сарматские)	. 52	56
Суглинки:		
лёссовидные	. 42	.47
моренные	. 25	.26
покровные		
Супеси		
Пески		
Ип	. 60	.90

Коэффициент пористости е грунта — отношение объема пор в грунте V_{Π} к объему твердой фазы грунта γ_{Π} :

$$e = V_{rr}/V_{rrs} = (\gamma_{rrs}/\gamma_{rrp}^{c}) - 1;$$
 (1.10)

$$e = m / (1-m).$$
 (1.11)

Коэффициент пористости е характеризует плотность укладки зерен грунта (чем меньшее, тем плотнее грунт). В зависимости от коэффициента пористости е песчаные грунты делят по плотности сложения на плотные, средней плотности и рыхлые (табл. 1.2).

Таблица 1.2 Классификация песков по коэффициенту пористости

Пески	Коэффициент пористости песков					
[плотных	средней плотности	рыхлых			
Гравелистые крупные и средней крупности	Менее 0,55	0,550,7	Более 0,7			
Мелкие	Менее 0,6	0,60,75	Более 0,75			
Пылеватые		0,50,8	Более 0,8			

Влажность грунта влияет на связь (сцепление) между частицами и состояние грунта, особенно на его консистенцию (ГОСТ 5180—84).

Фактическая естественная влажность грунта W, %, — это отношение массы воды в порах грунта к массе сухого грунта $m_{\rm B}$ в данном объеме, выражаемое в процентах или в долях единицы:

$$W=\frac{m_{\rm BJ}-m_{\rm c}}{m_{\rm c}}\cdot 100,$$

где $m_{\rm вл}$, $m_{\rm c}$ — масса грунта соответственно до и после просушивания, г.

Объемная влажность

$$W_{\rm of} = W \gamma_{\rm rp}^{\rm c}. \tag{1.13}$$

Абсолютная влажность (полная влагоемкость) $W_{\text{полн}}$, %, при заполнении всех пор водой составляет:

$$W_{\text{полн}} = \frac{m\gamma_{\text{B}}}{(100 - m)\gamma_{\text{TB}}},\tag{1.14}$$

где γ_B — плотность воды в порах, г/см³.

Коэффициент (индекс) водонасыщения K_{ω} — это отношение фактической влажности к абсолютной:

$$K\omega = W / W_{\text{полн}}. \tag{1.15}$$

Коэффициент водонасыщенности K_{ω} характеризует степень насыщения грунта водой (доли ед.). Приведем его значения для различных песков, а также предельную влажность грунтов природного сложения.

Песок	Κω
Сухой (маловлажный)	< 0,5
Влажный	0,50,8
Водонасыщенный	0,81,0
Грунт природного	Предельная влажность, %
сложения	влажность, %
Песок	10
Супесь	1015
Суглинок	1525
Глина	2535

Набухание — это способность грунта при росте его влажности увеличиваться в объеме (ГОСТ 24143—80). Процесс, обратный набуханию, происходящий при высыхании грунта, называют его усадкой.

Коэффициент набухания $K_{\rm H}$ — это отношение объема грунта после насыщения водой $V_{\rm H}$ к его объему в естественном состоянии $V_{\rm ect}$:

$$K_{\rm H} = V_{\rm H} / V_{\rm ecr}. \tag{1.16}$$

Коэффициент набухания $K_{\rm H}$ учитывают при определении объема гидроотвала.

Грунты	K_{H}
Глины тяжелые вязкие	21,5
То же, обычные пластичные	1,5
Суглинки тяжелые	1,51,45
То же, средние	
То же, легкие	1,2
Супеси	1,151,05
Пески пылеватые	1,1
То же, глинистые	1,05
То же, крупнозернистые	1,0
04	

Сцепление — свойство, характеризующее связность грунта. Чем больше сцепление грунта, тем грунт плотнее и тем больший расход воды требуется на его размыв (табл. 1.3).

Угол внутреннего трения характеризует сопротивление грунта сдвигу, представляющее собой для связных грунтов сопротивление внутри грунта вследствие трения и сцепления между частицами. Для сыпучих рыхлых грунтов угол внутреннего трения приближается к углу естественного откоса (табл. 1.4—1.6).

Таблица 1.3 Сцепление частиц различных видов грунтов и расход воды на их размыв

Грунты	Сцепление, МПа	Удельный расход воды на размыв 1 м^3 грунта q , м^3
Пески пылеватые	0,0040,008	46
Супеси	0,0070,042	410
Суглинки	0,0190,068	1016
Глины	0,0370,082	1218
Жирные глины	0,0470,094	1420

Таблица 1.4 Угол внутреннего трения для несвязанных грунтов

Грунты	Угол внутреннего трения φ, градусы, для грунта				
	сухого влажного водонасыщенного				
Песок: крупный и гравели- стый	3337	3035	3035		
средней крупности мелкий пылеватый	3033 2733 2733	2730 2530 2225	2528 2228 1822		

Грунты	Угол внутреннего трения ф, градусы, для гру				
	сухого	влажного	водонасыщенного		
Гравий и галька	40	40	40		
Супесь	2227	2025	1518		
Торф	25	20	15		
Растительный грунт	40	35	25		

Таблица 1.5 Характеристика различных видов песков по плотности, углу внутреннего трения ϕ и коэффициенту фильтрации K_{ϕ}

Пески	Плотность, кг/м ³ , для грунтов сложения		Значение ф, градусы, в грунтах		<i>К</i> _ф , м/сут.
	средней плотности	плотных	средней плотности	плотных	
Тонкозернистый пылеватый	1920	2000	26	30	5
Мелкозернистый	1920	2000	27	30	20
Среднезернистый	1940	2000	28	32	50
Разнозернистый	1960	2050	29	33	50
Крупнозернистый	1980	2050	29	38	500
С гравием и галькой	2000	2100	30	55	500

Таблица 1.6 Угол естественного откоса различных грунтов

Грунты	Угол естественного откоса грунтов α, градусы,			
L	сухих	влажных	мокрых	
Растительный	40	35	25	
Песок:	1			
крупный	3035	3240	2527	
средний	2830	35	25	
мелкий	25	3035	1520	
Суглинок	4050	3540	2530	
Глина жирная	4045	35	1520	
Гравий	3540	35	2530	
Торф (без корней)	40	25	15	

Угол естественного откоса α — это наибольший (предельный) угол наклона откоса уступа к горизонту с сохранением устойчивого состояния (когда грунт не осыпается, не оплывает и т.д.); этот угол зависит от характера и влажности грунтов (см. табл. 1.6).

Коэффициент рыхления грунта K_p — это отношение объема разрыхленного грунта к объему грунта в природном состоянии. Коэффициент разрыхления грунта K_p некоторых грунтов имеет следующие значения:

чистые песок и гравий	.1,05	
суглинистый и супесчаный грунт	.1,21,2	25
глина и плотная глина с галькой	.1,31,4	1
щебенистый грунт	1,41,4	15

Водопроницаемость — это фильтрационная способность грунтов пропускать воду под действием силы тяжести или гидростатического напора. Водопроницаемость определяется коэффициентом фильтрации, который зависит от состава, степени уплотненности, структуры и сложения грунтов (ГОСТ 25584—83).

Коэффициент фильтрации — это количество воды $(V_{\rm B} \times \gamma_{\rm B})$, прошедшей за время t=1 ч через образец площадью S=1 м 2 и толщиной a=1 м при разности давления $\Delta p=133,3$ Па:

$$K_{\Phi} = (V_{\rm B}a \gamma_{\rm B}) / (S\Delta pt). \tag{1.17}$$

Обычно K_{ϕ} выражают в единицах скорости (м/сут., м/с).

Приведем коэффициенты фильтрации K_{Φ} , м/сут.

Песчаные грунты

Песок:

пылеватый глинистый с преобладающей фракцией 0,01...0,05 мм мелкозернистый глинистый с преобладающей фракцией 0,1...0,25 мм среднезернистый однородный с преобладающей фракцией 0,25...0,5 мм крупнозернистый однородный с преобладающей фракцией 0,5...1,0 мм

5-20

Галечниковые и гравийные грунты

Галечник с песком	20100
То же, чистый	Менее 200
Гравий с песком	75150
То же, чистый	100200
Гравийно-галечный грунт со значительной примесью	
мелких частиц	2060

Глинистые грунты

Глина	Менее 0,001
Суглинок тяжелый	0,05—0,01
То же, легкий и средний	0,040,005
Супесь плотная	0,001
То же, рыхлая	10,1

Торфяной грунт

Торф малоразложившийся	. 4,:	5	. 1
То же, средне- и сильноразложившийся	. 1.	0	.1

Гидравлическая крупность частиц грунта W, см/с, — это скорость падения частиц грунта в спокойной воде (табл. 1.7), которая зависит от формы, размеров и плотности частиц грунта, вязкости и плотности среды. Гидравли-

ческая крупность частиц грунта используется при расчетах процессов всасывания, осаждения, гидравлической классификации и др.

При гидравлических расчетах процессов гидромеханизации учитывают осредненную гидравлическую крупность стесненного падения частиц грунта различной крупности, равную среднеарифметическому значению гидравлической крупности отдельных фракций, т.е.:

$$W_i = (W_1 + W_2)/2; \ W = (W_1 + W_2 + \sqrt{W_1 W_2})/3.$$
 (1.18)

Таблица 1.7 Гидравлическая крупность частиц грунта при свободном падении в спокойной воде $W_{\rm cs}$ в зависимости от диаметра частиц

Диаметр частиц, мм	$W_{ m cs}$, см/с, при температуре воды, °С			
	5	10	15	20
0,001	0,000126	0,00049	0,00005	0,00006
0,01	0,0043	0,0049	0,0056	0,0064
0,05	0,106	0,124	0,148	0,16
0,10	0,386	0,46	0,535	0,61
0,125	0,55	0,66	0,78	0,89
0,25	1,84	2,05	2,26	2,46
0,50	5,34	5,67	6,0	6,33
0,75	8,81	9,23	9,65	10,07
1,0	11,20	11,68	12,17	12,66
1,5	15,15	15,65	16,15	16,65
2,0	18,25	18,75	19,25	19,75
2,5	20,42	20,92	21,42	21,92
3,0	22,25	22,75	23,25	23,75
3,5		24,53		
4,0		26,85	_	_
5,0		30,00		

Окончание табл. 1.7

Диаметр частиц, мм	$W_{\sf cs}$, см/с, при температуре воды, $^{\circ}{ m C}$			
	5	10	15	20
6,0	_	32,8	_	_
7,0	_	35,5	<u> </u>	
8,0	_	38,0	<u> </u>	_
9,0	_	40,3	_	
10,0	_	42,5	<u> </u>	_
15,0		52,0	_	_
20,0	_	60,2		_
25,0	_	67,2		_
30,0		73,6	_	_

Примечание: Приведены данные для грунтов плотностью $\rho_{\rm rp}=2,65\,$ т/м³. Для грунтов другой плотности необходимо табличное значение гидравлической крупности умножить на коэффициент $Z=(\rho_{\rm rp}-1)/1,65\,$ (для ламинарного и переходного режимов течения) или $Z=\sqrt{(\rho_{\rm rp}-1)/1,65}\,$ (для турбулентного режима).

Вид грунта определяется по гранулометрическому составу фракций (табл. 1.8).

Таблица 1.8 Вид грунта в зависимости от соотношения состава фракций

Грунты	Содержание фракций, % от массы сухого грунта,		
	глинистых	пылеватых	песчаных
	00,005 мм	0,0050,05 мм	0,052 мм
Глина:			
песчаная	Более 30	Меньше, чем	Больше, чем глини-
		глинистых	стых
пылеватая	То же	Больше, чем	Меньше, чем глини-
	1	глинистых	стых
средняя	"—	Меньше, чем	То же
		глинистых	
тяжелая	Более 60	То же	"