

А. М. ГОНЧАРЕНКО, В. А. КАРПЕНКО, И. А. ГОНЧАРЕНКО

ОСНОВЫ ТЕОРИИ ОПТИЧЕСКИХ ВОЛНОВОДОВ

НАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК БЕЛАРУСИ Институт физики им. Б. И. Степанова

А. М. Гончаренко,

- В. А. Карпенко,
- И.А.Гончаренко

ОСНОВЫ ТЕОРИИ ОПТИЧЕСКИХ ВОЛНОВОДОВ

Минск «Белорусская наука» 2009

УДК 621.372.8:535.1

Гончаренко, А. М. Основы теории оптических волноводов / А. М. Гончаренко, В. А. Карпенко, И. А. Гончаренко. — Минск : Белорус. наука, 2009. — 296 с. — ISBN 978-985-08-1024-3.

В монографии излагается теория оптических диэлектрических волноводов: планарных, круглых, эллиптических, прямоугольных, полосковых и линзоподобных. Особое внимание уделено влиянию анизотропии, оптической нелинейности и неоднородности на волноводные свойства волоконных передающих систем. Рассмотрены направляющие свойства микроструктурированных волноводов. Книга рассчитана на студентов и преподавателей, а также широкий круг специалистов, имеющих дело с использованием оптических волоконных устройств.

Табл. 2. Ил. 64. Библиогр.: 222 назв.

Рецензенты:

доктор физико-математических наук, профессор В. Н. Белый доктор физико-математических наук, профессор А. Л. Толстик

ISBN 978-985-08-1024-3

 © Гончаренко А. М., Карпенко В. А., Гончаренко И. А., 2009
 © Оформление РУП «Издательский дом «Белорусская наука», 2009

ПРЕДИСЛОВИЕ

До 60-х годов прошлого века под волноводами в основном понимались металлические направляющие волны устройства, которые применяются в СВЧ диапазоне и представляют собой полые трубы. В конце 60-х годов прошлого века начались исследования оптических волноводов, представляющих собой диэлектрические нити с малым поглощением. В оптических волноводах в отличие от металлических электромагнитная энергия направляемой волны не полностью локализована внутри волновода. Такие волноводы часто называют открытыми.

Теория оптических волноводов может быть создана на основе решения граничных задач электродинамики. А такие задачи более или менее легко решаются в случаях простейших форм поперечного сечения волноводов и однородных изотропных волноводов. Теория оптических волноводов с произвольным поперечным сечением, анизотропных и неоднородных волноводов, а также волноводов, работающих в нелинейном режиме, достаточна сложна.

В данной монографии изложены основы электромагнитной теории оптических волноводов. В частности, рассмотрены свойства плоских изотропных и анизотропных волноводов, круглых, эллиптических, прямоугольных и неоднородных волноводов. По сравнению с предыдущим изданием 1983 г. добавлены главы, в которых приведен анализ анизотропных волноводов, волноводов с некруглым поперечным сечением и нелинейных оптических волноводов с помощью точного и приближенного решения по методу формул сдвига, а также рассматриваются новые классы направляющих структур — так называемые микроструктурированные (фотонно-кристаллические и брэгговские) волноводы. В книге использованы работы как отечественных, так и зарубежных авторов, но преимущественно обобщены результаты авторов и их учеников. Здесь не рассматриваются такие оптические явления, как дифракция на периодических структурах, распространение импульсов и некоторые другие. Этим объясняется отсутствие в приводимых списках литературы полного перечня работ по теории оптических волноводов. Ссылки даются лишь на работы, в которых изложены основные положения теории.

Авторы выражают надежду, что монография будет полезна специалистам в области оптоэлектроники и оптической обработки и передачи информации, а также преподавателям и студентам физических и радиотехнических специальностей.

Главы 1, 2, 7 написаны А. М. Гончаренко, 3, 4, 11 — В. А. Карпенко, 6, 8, 9, 10 — И. А. Гончаренко, глава 5 — совместно А. М. Гончаренко и И. А. Гончаренко. Литература приводится в конце каждой главы, нумерации формул и рисунков даются по параграфам. Если указывается формула из другой главы, то впереди приводится дополнительно номер соответствующей главы.

Авторы выражают признательность рецензентам книги доктору физико-математических наук, профессору В. Н. Белому и доктору физико-математических наук, профессору А. Л. Толстику, сделавших ценные замечания, а также ведущему инженеру Института физики НАН Беларуси М. В. Роговой за постоянную помощь при подготовке рукописи к печати.

введение

Сведения об оптических волокнах (световодах) и диэлектрических волноводах имеются, например, в монографиях [1-6]. Поскольку мы излагаем здесь лишь основы теории оптических волноводов и не рассматриваем их многочисленные применения в интегральной оптике, линиях оптической связи и устройствах передачи и обработки информации, приведем лишь краткую историческую справку о диэлектрических (оптических) волноводах. Долгое время считалось, что направляющим действием могут обладать только металлические провода или металлические трубы. Но в начале прошлого века Д. Хондрос и П. Дебай теоретически показали [7—9], что и вдоль диэлектрического провода должны распространяться электромагнитные волны. В работе [9] были изучены основные особенности диэлектрических волноводов. Можно считать, что с этого момента начинается история диэлектрических и оптических волноводов. Заметим, что с точки зрения теории нет различия между диэлектрическими волноводами вообще и оптическими в частности. В 1949 г. Б. З. Каценеленбаум рассмотрел возбуждение круглого изотропного диэлектрического волновода диполем и установил наличие двух типов несимметричных волн [10,11]. Несколько позже Н. А. Семенов дал детальный анализ всех возможных типов волн круглого изотропного диэлектрического волновода [12], а в 1961 г. Е. Снитцер исследовал типы волн такого волновода в применении к оптическому диапазону [13].

Попытки экспериментального изучения диэлектрических волноводов были предприняты авторами работ [14, 15]. Однако практической необходимости в диэлектрических волноводах до появления техники СВЧ не было, и поэтому их свойства детально не исследовались. С развитием СВЧ техники в середине 30-х годов прошлого столетия возникает интерес и к диэлектрическим волноводам. Появляются теоретические и экспериментальные работы [16—19]. Но практически они стали применяться в 50-х годах в связи с развитием миллиметровой техники, а затем, и с созданием лазеров.

Первым диэлектрическим волноводом, в котором изучались дискретные моды, распространяющиеся на оптических частотах, было стеклянное волокно со стеклянной оболочкой. Такое волокно исследовалось Н. С. Капани с целью применения волоконной оптики в системах передачи изображения. Он же впервые предложил термин «волоконная оптика» [1]. По его определению волоконная оптика это оптика на основе активных или пассивных волокон, применяемая для передачи света (ультрафиолетовой, видимой и инфракрасной областей спектра) по заданному пути.

Появление оптических квантовых генераторов в корне изменило отношение исследователей и практиков ко многим оптическим явлениям и устройствам. Открылась возможность использования оптического диапазона электромагнитных волн в системах передачи и обработки информации. А это влекло за собой резкое увеличение емкости линий передачи данных, быстродействия и улучшения многих других параметров устройств обработки информации. Изобретение лазера и прогресс в когерентной оптике привели не только к необходимости поиска и разработки передающей среды для дальней связи, но и построения направляющих структур, с помощью которых можно было бы создать оптические компоненты и связать их в оптические схемы для оконечных устройств. При этом желательно, чтоб такие оптические волноводы допускали бы планарное производство компонентов и их увязку в составе планарных оптических схем. Возникли новые направления — оптическая электроника и интегральная оптика [20, 21]. Оптические системы уже широко применяются как в наземных, так и в космических системах обработки и передачи информации.

В настоящее время диэлектрические волноводы активно используются в качестве передающей среды в системах оптической связи. Обладая малыми потерями и низкой дисперсией, они способны передавать широкополосные сигналы на большие расстояния. Благодаря своим уникальным свойствам диэлектрические волноводы служат также основой для различных устройств, применяющихся в системах оптической обработки и передачи информации.

Литература

1. Капани Н. С. Волоконная оптика. — М.: Мир, 1969. — 466 с.

2. Каценеленбаум Б. З. Высокочастотная электродинамика. — М.: Наука, 1966. — 451с.

3. *Маркузе Д.* Оптические волноводы. — М.: Мир, 1974. — 571 с.

4. Вайнберг В. Б., Саттаров Д. К. Оптика световодов. — Л.: Машиностроение, 1977. — 319 с.

5. Взятышев В. Ф. Диэлектрические волноводы. — М.: Сов. радио, 1977. — 216 с.

6. Унгер Х.-Г. Планарные и волоконные оптические волноводы. — М.: Мир, 1980. — 656 с.

7. *Hondros D.* Über Elekromagnetische Drahtwellen // Ann. der Phys. 1909. Bd. 30. S. 905–910.

8. Hondros D. Symmetrical and unsymmetrical electromagnetic waves along wires // Phys. Z. 1909. Vol. 10. P. 804-807.

9. Hondros D., Debye P. Electromagnetishe Wellen an Dielektrischen Drahten // Ann. der Phys. 1910. Bd.32, N. 8. S. 465–472.

10. Каценеленбаум Б. 3. Симметричное возбуждение бесконечного диэлектрического цилиндра // ЖТФ. 1949. Т. 19, вып. 10. С. 1168—1181.

11. Каценеленбаум Б. З. Несимметричные колебания бесконечного диэлектрического цилиндра // ЖТФ. 1949. Т. 19, вып. 10. С. 1182—1191.

12. Семенов Н. А. Типы волн диэлектрического волновода // НДВШрадиотехника и электроника. 1958. Т. 1, № 4. С. 60.

13. Snitzer E. Cylindrical dielectric waveguides modes // J. Opt. Soc. Am. 1961. Vol. 51, No. 5. P. 491-496.

14. *Schriever O*. Electromagnetishe Wellen an Dielektrischen Drahten // Ann. der Phys. 1920. Bd. 63, N 5. S. 645–653.

15. Zahn H. bber den Nachweis Electromagnetisher Wellen an Dielektrischer Drahten // Phys. Z. 1915. Bd. 16. S. 414-421.

16. Garson J. R. Mead S. P., Schelkunoff S. A. Hyperfrequency waveguides — mathematical theory // Bell. Syst. Techn. J. 1936. Vol. 15. P. 310–315.

17. Southworth G. C., Hyperfrequency waveguides – general consideration and experimental results // Bell. Syst. Techn. J. 1936. Vol. 15. P. 284–292.

18. Kaspar E. Experimentelle Untersuchung der Elektromagnetischen Wellen // Ann. der Phys. 1938. Bd. 32, N 4. S. 353–357.

19. *Малов М. Н.* Электромагнитные волны в полых проводниках и диэлектрических стержнях // УФН, 1940. Т. 23, № 4. С. 40-43.

20. Гончаренко А. М., Редько В. П. Введение в интегральную оптику. Мн.: Наука и техника, 1975. — 152 с.

21. Введение в интегральную оптику / Под ред. М. Барноски. — М.: Мир, 1977. — 368 с.

Глава 1

ОСНОВЫ ФИЗИЧЕСКОЙ ОПТИКИ

§ 1. Уравнения Максвелла. Волновое и параболическое уравнения

Электромагнитное поле в классической электродинамике определяется совокупностью векторов напряженности электрического поля **E**, магнитного поля **H** и векторов электрической **D** и магнитной **B** индукций. Эти векторы являются конечными и непрерывными функциями пространства и времени в пределах заданной непрерывной среды. Они подчиняются уравнениям Максвелла

rot
$$\mathbf{H} - \frac{\partial \mathbf{D}}{\partial t} = 0$$
, (1.1)

rot
$$\mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = 0$$
, (1.2)

$$\operatorname{div} \mathbf{D} = 0, \tag{1.3}$$

$$\operatorname{div} \mathbf{B} = 0. \tag{1.4}$$

Мы предполагаем, что в рассматриваемом пространстве отсутствуют токи и заряды. Для оптического диапазона волн это предположение всегда остается в силе, а уравнения (1.1)—(1.4) достаточно полно описывают все явления физической оптики.

Система уравнений (1.1)—(1.4) должна быть дополнена материальными уравнениями связи между векторами напряженности **E**, **H** и векторами индукции **D**, **B**. Эта связь определяется свойствами среды и может быть достаточно сложной. Только в вакууме векторы **D**, **E** и **B**, **H** соответственно пропорциональны

$$\mathbf{D} = \varepsilon^{(0)} \mathbf{E} , \qquad (1.5)$$

$$\mathbf{B} = \boldsymbol{\mu}^{(0)} \mathbf{H} , \qquad (1.6)$$

где $\epsilon^{(0)}$, $\mu^{(0)}$ — диэлектрическая и магнитная проницаемости вакуума. Для гармонических волн в линейной изотропной среде также сохраняется простая пропорциональность этих векторов:

$$\mathbf{D} = \varepsilon \mathbf{E} , \qquad (1.7)$$

$$\mathbf{B} = \mu \mathbf{H} . \tag{1.8}$$

Коэффициенты пропорциональности ε , μ — диэлектрическая и магнитная проницаемости среды. В оптическом диапазоне магнитная проницаемость любой среды одна и та же. Если линейная среда анизотропная, то можно оставить связь между векторами в виде (1.7), (1.8), но величины ε , μ — тензоры второго ранга. В этом случае каждая компонента вектора **D** представляется линейной комбинацией компонент вектора **E** (и наоборот):

$$D_{x} = \varepsilon_{11}E_{x} + \varepsilon_{12}E_{y} + \varepsilon_{13}E_{z},$$

$$D_{y} = \varepsilon_{21}E_{x} + \varepsilon_{22}E_{y} + \varepsilon_{23}E_{z},$$

$$D_{z} = \varepsilon_{31}E_{x} + \varepsilon_{32}E_{y} + \varepsilon_{33}E_{z}.$$
(1.9)

В магнитных средах аналогичное соотношение имеет место и для векторов **В** и **H**. В немагнитных средах, которые обычно в оптике и рассматриваются, величина μ совпадает с магнитной проницаемостью вакуума.

Если имеется поглощение или усиление света в среде, то это учитывается в макроскопической электродинамике введением комплексной диэлектрической проницаемости $\tilde{\varepsilon} = \varepsilon - i\sigma$, в которой мнимая часть σ определяется величиной коэффициента поглощения (усиления).

Если диэлектрическая проницаемость среды є остается неизменной в пределах какого-либо объема (тела), то такую среду называют однородной. В неоднородных средах є является функцией координат. На границах однородных тел диэлектрическая проницаемость скачкообразно изменяется. И поскольку электромагнитное поле зависит от среды, то и его векторы также претерпевают резкие изменения на поверхностях раздела разных сред. Соотношения между векторами поля двух граничных сред называются граничными условиями. В простейших случаях они имеют следующий вид [1—4]:

$$D_n^I = D_n^{II}, \quad B_n^I = B_n^{II}$$
 (1.10)

$$E_{\tau}^{I} = E_{\tau}^{II} \qquad H_{\tau}^{I} = H_{\tau}^{II} \tag{1.11}$$

Здесь индекс *n* означает нормальную составляющую, а τ — тангенциальную. Поскольку в оптическом диапазоне магнитная проницаемость любой среды $\mu = \mu^{(0)}$, то граничные условия для магнитных векторов записываются в виде равенства векторов, а не их компонент:

$$\mathbf{H}^{\mathrm{I}} = \mathbf{H}^{\mathrm{II}}, \quad \mathbf{B}^{\mathrm{I}} = \mathbf{B}^{\mathrm{II}}. \tag{1.12}$$

Поток энергии электромагнитного поля определяется вектором Умова—Пойнтинга

$$\mathbf{S} = [\mathbf{E} \ \mathbf{H}], \tag{1.13}$$

где квадратная скобка означает векторное произведение векторов **E** и **H**. Средний по времени поток энергии гармонических волн записывается в виде

$$\overline{\mathbf{S}} = \frac{1}{2} [\mathbf{E}\mathbf{H}^*], \qquad (1.14)$$

где звездочка означает комплексно сопряженную величину.

При исследовании распространения электромагнитных волн часто удобнее использовать не уравнения Максвелла в форме (1.1)—(1.4), а уравнения, которые следуют из них. Например, для гармонических волн в однородной изотропной среде из уравнений Максвелла следует уравнение

$$\Delta \mathbf{E} + k^2 \mathbf{E} = 0, \qquad (1.15)$$

где $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ — оператор Лапласа, $k^2 = \omega^2 \varepsilon \mu$; ω — циклическая частота гармонических колебаний. Такое же уравнение справедливо для всех векторов поля. Это уравнение называется волновым уравнением гармонического поля. В неоднородных изотропных средах векторы **E**, **H** подчиняются следующим уравнениям:

$$\Delta \mathbf{E} + k^{2}\mathbf{E} + \operatorname{grad}\left(\varepsilon^{-1}\left(\operatorname{grad} \varepsilon \cdot \mathbf{E}\right)\right) = 0, \qquad (1.16)$$

$$\Delta \mathbf{H} + k^{2}\mathbf{H} - \varepsilon^{-1} \left[\operatorname{grad} \varepsilon \operatorname{rot} \mathbf{H} \right] = 0.$$
 (1.17)

Если неоднородность среды невелика, так что на расстояниях порядка длины волны диэлектрическая проницаемость практически не изменяется [1, 5], то можно пренебречь последними членами в этих уравнениях. В таких случаях приближенно любые компоненты векторов электромагнитного поля удовлетворяют уравнениям вида (1.15).

Для анизотропных однородных сред волновые уравнения можно записать в виде

$$\varepsilon^{-1} \operatorname{rot} \operatorname{rot} \mathbf{E} - \omega^2 \mu \, \mathbf{E} = 0 \,, \tag{1.18}$$

$$\operatorname{rot} \,\varepsilon^{-1} \operatorname{rot} \,\mathbf{H} - \omega^2 \mu \,\mathbf{H} = 0 \,. \tag{1.19}$$

Волновые уравнения описывают электромагнитные поля во всех точках пространства. В узких, например лазерных, пучках поле сконцентрировано около продольной оси пучка и быстро спадает до нуля в поперечных направлениях. Вследствие дифракции такой пучок может медленно расширяться по мере распространения в свободном пространстве. Если же среда неоднородна в поперечной плоскости, то дифракционное расхождение пучка может компенсироваться его сжатием за счет неоднородности. Математическое описание узких световых пучков можно проводить с помощью уравнений более простых, чем волновые.

Предположим, что монохроматическое поле распространяется в направлении оси *OZ*, а его энергия быстро убывает в поперечном направлении. В этом случае электромагнитное поле (точнее, любая из компонент его векторов) может быть записано в виде

$$u = \varphi(x, y, z) \exp(-ikz), \qquad (1.20)$$

где φ — медленно изменяющаяся с ростом *z* комплексная функция. Подставляя (1.20) в (1.15) и пренебрегая членом $\frac{\partial^2 \varphi}{\partial z^2}$ по сравнению с $k \frac{\partial \varphi}{\partial z}$ и другими членами, прибли-

женно находим следующее уравнение:

$$\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} - 2ik \frac{\partial \varphi}{\partial z} = 0, \qquad (1.25)$$

которое является параболическим и широко используется в теории дифракции и в теории гауссовых (лазерных) пучков света.

§ 2. Плоские волны

Простейшими решениями уравнений Максвелла являются плоские электромагнитные волны

$$\mathbf{E} = \mathbf{E}_0 \exp(i\mathbf{k}\,\mathbf{r} - i\omega\,t), \quad \mathbf{H} = \mathbf{H}_0 \exp(i\mathbf{k}\,\mathbf{r} - i\omega\,t). \quad (2.1)$$

Здесь **k** — волновой вектор, **r** — радиус-вектор рассматриваемой точки пространства, ω — круговая частота. В изотропных средах волновой вектор **k** и частота ω подчиняются соотношению

$$\mathbf{k}^2 = \omega^2 \varepsilon \mu , \qquad (2.2)$$

которое называется дисперсионным.

Подставляя (2.1) в уравнения Максвелла (1.1), (1.2), получаем так называемые уравнения Максвелла для плоских волн

$$\omega \mathbf{D} = -[\mathbf{k} \mathbf{H}], \quad \omega \mathbf{B} = [\mathbf{k} \mathbf{E}]. \tag{2.3}$$

Из них очевидна поперечность электромагнитных волн.

В прозрачной среде волновой вектор вещественен, и его можно записать в виде

$$\mathbf{k} = k \,\mathbf{n},\tag{2.4}$$

где $k = 2\pi/\lambda$ — волновое число, λ — длина волны в среде, **n** — единичный вектор волновой нормали. Если в среде имеется поглощение или усиление, то диэлектрическая проницаемость ε должна быть комплексной величиной и вектор **k** тоже будет комплексным

$$\mathbf{k} = \mathbf{k}_1 + i\mathbf{k}_2. \tag{2.5}$$

При этом вектор \mathbf{k}_1 играет роль волнового вектора, а вектор \mathbf{k}_2 характеризует затухание или усиление и направление максимального изменения амплитуды волн. В общем случае векторы \mathbf{k}_1 и \mathbf{k}_2 могут быть не параллельны между собой, и тогда плоскости равных фаз ($\mathbf{k}_1 \mathbf{r} = \text{const}$) не параллельны плоскостям равных амплитуд ($\mathbf{k}_2 \mathbf{r} = \text{const}$). Такие волны называются неоднородными волнами [3]. Если векторы \mathbf{k}_1 и \mathbf{k}_2 параллельны между собой, то волны называются однородными затухающими. Неоднородные волны могут существовать и в прозрачных средах при полном отражении на границах раздела. Именно полное отражение лежит в основе локализации энергии в диэлектрических волноводах.

Поляризация электромагнитных волн определяется видом кривой, которую описывает конец электрического вектора **E** в произвольной точке пространства при распространении через нее волны. Для описания поляризации используется несколько методов, в том числе инвариантных [3]. Однако для применения в оптических волноводах лучше всего подходит следующий достаточно простой способ. Совместим ось *OZ* с направлением распространения плоской волны и рассмотрим вид кривой, описываемой концом вектора **E** в поперечной плоскости (*x*, *y*). Эта кривая определяется точками, координаты которых равны:

$$x = E_x = a \cos(kz - \omega t + \alpha),$$

$$y = E_y = b \cos(kz - \omega t + \beta), \quad z = E_z = 0.$$
(2.6)

Здесь $a = E_{0x}$; $b = E_{0y}$; α , β — начальные фазы. Из (2.6) следует уравнение

$$\frac{x^2}{y^2} - 2\frac{xy}{ab}\cos\delta + \frac{y^2}{b^2} = \sin^2\delta, \qquad (2.7)$$

где $\delta = \beta - \alpha$. Соотношение (2.7) есть уравнение эллипса, вписанного в прямоугольник со сторонами, параллельными осям *OX*, *OY* и равными 2*a*, 2*b*. Координаты точек касания эллипсом сторон прямоугольника равны (± *a*, ± *b* cos δ) и (± *a* cos δ , ± *b*). Главные оси эллипса повернуты относительно осей *OX*, *OY* на угол θ , определяемый уравнением

$$tg2\theta = \frac{2ab}{a^2 - b^2}\cos\delta.$$
 (2.8)

Таким образом, в общем случае волны имеют эллиптическую поляризацию. При a = b и $\delta = m\pi/2$, $m = \pm 1$, ± 3 , ..., эллипс вырождается в окружность. Но обычно, когда говорят, что свет поляризован, имеют в виду линейную поляризацию. Она имеет место при $\delta = \pm m\pi$, где m любое целое число.

Напомним теперь основные законы отражения и преломления электромагнитных волн на поверхности раздела сред. Параметры падающей волны будем обозначать индексом *i*, отраженной — *r*, а преломленной — *t*. Пусть плоскостью раздела будет плоскость z = 0. Из граничных условий, которые удовлетворяются во всех точках поверхности раздела сред и в любой момент времени, с учетом (2.1) получаем

$$\left(\mathbf{k}^{i} \mathbf{r}\right)_{z=0} = \left(\mathbf{k}^{r} \mathbf{r}\right)_{z=0} = \left(\mathbf{k}^{t} \mathbf{r}\right)_{z=0}$$
(2.9)

или

$$k_x^i = k_x^r = k_x^t \tag{2.10}$$

$$k_{y}^{i} = k_{y}^{r} = k_{y}^{t}. (2.11)$$

Выберем в качестве плоскости падения плоскость (*xz*). Тогда $k_y^i = k_y^r = k_y^t = 0$. И из (2.10) находим известные законы отражения и преломления

$$k^{i}\sin i_{0} = k^{r}\sin r = k^{t}\sin t,$$
 (2.12)

где углы i_0 — падения, r — отражения, t — преломления. В изотропной и однородной среде $k^i = k^r$ и $r = i_0$, а углы падения и преломления подчиняются соотношению Снеллиуса

$$\sin i_0 / \sin t = n'/n , \qquad (2.13)$$

где n — показатель преломления верхней среды при z > 0, n' — при z < 0.

Формулы Френеля, определяющие поляризационные и энергетические характеристики отраженных и прелом-

ленных волн, можно получить следующим образом. На основании (1.10), (1.11) граничные условия для векторов **Е** и **Н** запишем в виде:

$$[\mathbf{E}^{i} + \mathbf{E}^{r} - \mathbf{E}^{t}, \mathbf{q}] = 0, \qquad (2.14)$$

$$H^{i} + H^{r} - H^{t} = 0.$$
 (2.15)

Здесь **q** — нормаль к поверхности раздела сред, а прямые скобки по-прежнему означают векторное произведение. Уравнения (2.3) перепишем в форме

$$\mathbf{E} = -\sqrt{\mu/\epsilon} \ [\mathbf{nH}], \ \mathbf{H} = \sqrt{\epsilon/\mu} \ [\mathbf{nE}]. \tag{2.16}$$

Умножая векторно (2.14), (2.15) на **q** и используя (2.16), получаем

$$\mathbf{E}^{i} + \mathbf{E}^{r} - \mathbf{E}^{t} - \mathbf{q}(\mathbf{q}\mathbf{E}^{i} + \mathbf{q}\mathbf{E}^{r} - \mathbf{q}\mathbf{E}^{t}) = 0, \qquad (2.17)$$

$$n(\mathbf{n}^{i}\cdot\mathbf{q}\mathbf{E}^{i} - \mathbf{E}^{i}\cdot\mathbf{q} \mathbf{n}^{i}) + n(\mathbf{n}^{r}\cdot\mathbf{q}\mathbf{E}^{r} - \mathbf{E}^{r}\cdot\mathbf{q} \mathbf{n}^{r}) -$$

- $n(\mathbf{n}^{t}\cdot\mathbf{q}\mathbf{E}^{t} - \mathbf{E}^{t}\cdot\mathbf{q} \mathbf{n}^{t}) = 0,$ (2.18)

где \mathbf{n}^i , \mathbf{n}^r , \mathbf{n}^t — волновые нормали соответственно падающей, отраженной и преломленной волн. Уравнения (2.17) и (2.18) дают возможность определить векторы \mathbf{E}^r и \mathbf{E}^t через заданный вектор \mathbf{E}^i падающей волны. Но удобнее, используя линейность уравнений Максвелла, произвольную падающую волну разбить на две линейно поляризованные волны с векторами, перпендикулярными и параллельными плоскости падения.

Рис. 2.1. Коэффициенты отражения волн в зависимости от угла падения i_0 (n = 1, n' = 1,5)

Если электрические векторы волн перпендикулярны плоскости падения, то из (2.17), (2.18) получаем

$$\mathbf{E}^{i} + \mathbf{E}^{r} - \mathbf{E}^{t} = 0, \qquad (2.19)$$

$$n \cos i_{0} \mathbf{E}^{i} - n \cos r \mathbf{E}^{r} - n' \cos t \mathbf{E}^{t} = 0.$$

Из этих уравнений находим

$$\mathbf{E}^{t} = \frac{2n\cos i_{0}}{n\cos i_{0} + \sqrt{n'^{2} - n^{2}\sin^{2}i_{0}}} \mathbf{E}^{i}, \qquad (2.20)$$

$$\mathbf{E}^{r} = \frac{n \cos i_{0} - \sqrt{n^{\prime 2} - n^{2} \sin^{2} i_{0}}}{n \cos i_{0} + \sqrt{n^{\prime 2} - n^{2} \sin^{2} i_{0}}} \mathbf{E}^{i} .$$
(2.21)

Если вектор E параллелен плоскости падения, то вектор H перпендикулярен ей. В этом случае удобнее воспользоваться именно вектором H, в результате чего получаем

$$\mathbf{H}^{t} = \frac{2n'\cos i_{0}}{n'^{2}\cos i_{0} + n\sqrt{n'^{2} - n^{2}\sin^{2}i_{0}}} \mathbf{H}^{i}, \qquad (2.22)$$

$$\mathbf{H}^{r} = \frac{n^{\prime 2} \cos i_{0} - n\sqrt{n^{\prime 2} - n^{2} \sin^{2} i_{0}}}{n^{\prime 2} \cos i_{0} + n\sqrt{n^{\prime 2} - n^{2} \sin^{2} i_{0}}} \mathbf{H}^{i} .$$
(2.23)

Соотношения (2.20)—(2.23) называются формулами Френеля.

Коэффициенты отражения волн по интенсивности определяются через отношение квадратов векторов **E** или **H** отраженных и падающих волн. Из формул (2.21) и (2.23) легко убедиться, что коэффициент отражения r_{\perp} (при **E** = **E**_⊥) никогда не обращается в нуль, тогда как коэффициент отражения волны с параллельной поляризацией r_{\parallel} обращается в ноль при условии Брюстера tg $i_0 = n'/n$. Графики коэффициентов отражения приведены на рис. 2.1.

§ 3. Полное внутреннее отражение

Из формул Френеля можно убедиться, что при падении света из более плотной среды в менее плотную (n' < n) коэффициент отражения стремится к единице не при угле падения $i_0 = 90^\circ$, а при меньших углах. В этих случаях

СОДЕРЖАНИЕ

Предисловие	3 5 7
Глава 1. Основы физической оптики § 1. Уравнения Максвелла. Волновое и параболическое уравнения § 2. Плоские волны. § 3. Полное внутреннее отражение. § 4. Распространение света в анизотропных и гиротропных средах § 5. Гауссовы пучки света Литература	8 12 16 20 25 28
Глава 2. Теория тонкопленочных оптических волноводов. 1 § 1. Волноводные свойства плоского однородного диэлектрического слоя. 2 § 2. Поглощение и усиление волн в оптических волноводах. 4 § 3. Плоский симостродиций подмород. 4	30 30 40
 § 5. Плоский анизотропный волновод § 4. Двухслойные и многослойные волноводы Литература 	48 53
Глава 3. Планарные неолноролные лиэлектрические волноволы	55
§ 1. Поперечные профили диэлектрической проницаемости неодно-	55
родных волноводов	55
§ 2. Обобщенный слой Эккарта	62
§ 3. Обобщенный слой Пешля—Теллера	71
Литература	79
	<u>8</u> 0
8 1 Основное уравнение для оптинеских волноводы	81
§ 1. Основное уравнение для оптических волноводов	01
§ 2. Приолижения в решении основного уравнения	92 97
§ 5. Оптимальное разделение переменных	07 01
§ 4. Изотропные канальные волноводы	91
§ 5. Волноводы в среде с произвольной одноосной анизотропией	93
§ 6. Оптические волноводы в естественно гиротропнои среде	JU 0.1
§ /. Модели двумерно-неоднородных оптических волноводов 10	
§ 8. Сопоставительный анализ методов расчета 10	13
Литература 1	12
Глава 5. Оптические волоконные волноводы 1	14
§ 1. Свойства диэлектрических круглых волноводов	14
§ 2. Анизотропный диэлектрический волновод 12	26
§ 3. Радиально неоднородные оптические волноводы	37
Литература 14	45
	10
1 Общие соотношения	40 40
	+0 55
§ 2. Гешение грани нюй задати для эллинги секого цилиндра 1. 8.3. Эллинтинеский лизлектринеский ролнород с продольной анизо-	55
у 5. Оллинтический диолектрический волновод с продольной анизо	63
Питература 1/	72
Глава 7. Волноводные свойства линзоподобных сред П	73
§ 1. Общие замечания Г	/3
§ 2. Распространение волн в плоских линзоподобных средах 1 § 3. Распространение волн в круглых и эллиптических линзоподобных	/5
средах 18	81
Литература 18	83
Глава 8 Исследование анизотродных волноводов методом формул сленга	84
§ 1. Формула сдвига для анизотропных волноводов с некруглой фор- мой поперечного сечения	84 84

§ 2. Постоянные распространения анизотропных волноводов некруг-
лого сечения . § 3. Критические частоты анизотропных волноводов некруглого сечения § 4. Распределение полей мод анизотропных диэлектрических волно- водов . Литература .
Глава 9. Влияние оптической нелинейности на параметры и распределение
полей мод волноводов
§ 1. Влияние нелинейности на параметры направляемых мод оптиче-
СКИХ ВОЛНОВОДОВ
 9 2. Блияние полиненности на параметры направляемых мод анизо- тропных волноводов
анизотропных волноводовЛитература
Глава 10. Оптические волноводы на основе микроструктурированных сред
 § 1. Направляющие свойства микроструктурированных волноводов § 2. Расчет параметров микроструктурированных волноводов 8.3. Бозгороские волоския
 § 4. Волноводы из материала с отрицательным показателем преломления Литература
Глава 11. Электромагнитные свойства ограниченных волноводных слоев § 1. Общие замечания
§ 2. Дифракция на открытом конце волноводного слоя, ограниченного идеально проводящими областями
§ 3. Приближение поверхностных волн в задаче о дифракции на от- крытом конце волноводного слоя
§ 4. Дифракция электромагнитных волн на открытом конце волновод- ного слоя
§ 5. Дифракция поверхностных волн на стыке двух планарных волно- водов.
в. Стационарные колебания отрезка волноводного слоя с усилением Литература

Учебное издание

Гончаренко Андрей Маркович, Карпенко Валерий Александрович, Гончаренко Игорь Андреевич

ОСНОВЫ ТЕОРИИ ОПТИЧЕСКИХ ВОЛНОВОДОВ

Редактор Я. В. Рощина Художественный редактор В. А. Жаховец Компьютерная верстка Л. В. Харитонова

Подписано в печать 25.02.2009. Формат 84×108¹/₃₂. Бум. офс. № 1. Гарнитура Таймс. Усл. печ. л. 15,5. Усл. кр.-отт. 16,0. Уч.-изд. л. 12,7. Тираж 150 экз. Заказ 97.

Республиканское унитарное предприятие «Издательский дом «Белорусская наука». ЛИ 02330/0131569 от 11.05.2005. Ул. Ф. Скорины, 40, 220141, г. Минск.

Отпечатано в РУП «Издательский дом «Белорусская наука».