Ю. А. Кругляк КВАНТОВАЯ ХИМИЯ Киев: 1963 – 1991

Yu. A. Kruglyak QUANTUM CHEMISTRY Kiev: 1963 – 1991

Список сокращений

АГП/AGP – Антисимметризованные геминальные произведения (функции)

АМО/АМО – (Метод) альтернантных молекулярных орбиталей

АО/АО – Атомная орбиталь

АПСГ/APSG – (Метод) антисимметризованного произведения строго ортогональных геминалей

АУ/АН – Альтернантный углеводород

ВЗМО/НОМО – Высшая заполненная МО

BC/VB – (Метод) валентных схем

КВ/СІ – Конфигурационное взаимодействие

КВОД/CISD – КВ с учетом всех одно- и двухвозбужденных конфигураций

КРТ/QЕТ – Квазиравновесная теория

ЛКАO/LCAO – Линейная комбинация атомных орбиталей

ЛКГО/LCGO – Линейная комбинация гауссовых орбиталей

ЛКОС/LCBO – Линейная комбинация орбиталей связей

МК ССП/MCSCF – Многоконфигурационная (теория) ССП

МО/МО – Молекулярная орбиталь

МП/DM – Матрица плотности

МЧПДП/MINDO – Модифицированное частичное пренебрежение дифференциальным перекрыванием

НДП/ZDO – Нулевое дифференциальное перекрывание

НПМО/LUMO – Низшая пустая МО

НХФ/UHF – Неограниченный (метод) Хартри – Фока

НХФ-СП/UHF-SP – НХФ со спиновым проектированием

ОГ/ОЕН – Одноэлектронный гамильтониан

ОГТ/GTO – Орбитали гауссова типа

OCT/STO – Орбитали слэтеровского типа

ОХФ/RHF – Ограниченный (метод) Хартри – Фока

ОХФО/ROHF – Ограниченный (метод) Хартри – Фока для открытых оболочек

ПАП ССП/CASSCF – (Метод) полного активного пространства ССП

ПКВ/FCI – (Метод) полного конфигурационного взаимодействия

ППДП/INDO – (Метод) промежуточного пренебрежения дифференциальным перекрыванием

ППДП/2 / CNDO/2 – (Метод) полного пренебрежения дифференциальным перекрыванием

ППЭ/PES – Поверхность потенциальной энергии

ППП/РРР – (Метод) Паризера – Парра – Попла

РМП/RDM – Редуцированная матрица плотности

РМХ/ЕНМ – Расширенный метод Хюккеля

POPC/DODS – Разные орбитали для разных спинов

РХФ/ЕНГ – Расширенный (метод) Хартри – Фока

ССП/SCF – Самосогласованное поле

CTC/HFS – Сверхтонкая структура

OBC/GVB – (Метод) обобщенных валентных связей Годдарда

ОМХФ/GHF – Обобщенный метод Хартри – Фока

ОЭГ МКССП/ОЕН MCSCF – (Метод) одноэлектронного гамильтониана в МК теории ССП

ХФ/НГ – (Метод) Хартри – Фока

ХФР/HFR – (Метод) Хартри – Фока – Рутана

ЧПДП/INDO – Частичное пренебрежение дифференциальным перекрыванием

ЭВМ – Электронная вычислительная машина

ЭМО/ЕМО – Эквивалентные МО

ЭПР/ESR – Электронный парамагнитный резонанс

Karl K. Irikura. Glossary of Common Terms and Abbreviations in Quantum Chemistry: www.cccbdb.nist.gov/glossaryx.asp.

Содержание Contents

Предисловие / Preface	5
In Memoriam: Victor I. Danilov (1936 – 2014)	13
Список сокращений / List of abbreviations	15
I. Методы расчета электронной структуры молекул I. Methods of calculation of electronic structure of molecules	
Введение / Introduction Глава 1. Гамильтонианы и волновые функции Chapter 1. Hamiltonians and wave functions	27 28
1.1. Приближение Борна — Оппенгеймера / Born — Oppenheimer approximation 1.2. Волновые функции / Wave functions 1.2.1. Спин-орбитали / Spin-orbitals 1.2.2. Многоэлектронные спиновые состояния / Many-electron spin state	32 32
1.2.3. Детерминанты Слэтера / Slater determinants	35
1.3. Матричные элементы между слэтеровскими детерминантами Matrix elements over Slater determinants	39
1.3.1. Матричные элементы одноэлектронного оператора Matrix elements for a one-electron operator	43
1.3.2. Матричные элементы двухэлектронного оператора Matrix elements for a two-electron operator	46
Глава 2. Методы решения молекулярного уравнения Шредингера Chapter 2. Methods of solving the molecular Schrödinger equation	53
Введение / Introduction	53
2.1. Обобщенный метод самосогласованного поля Годдарда и его вариа	НТЫ
Generalized Goddard self-consistent field method and its variants 2.1.1. Свойства решений уравнений обобщенного метода ССП и	53
примеры его применения	65
Properties of solutions of the Generalized SCF method and examples of its application	
2.2. Метод Хартри – Фока и теорема Бриллюэна / Hartree – Fock method	75
2.2.1. Теорема Бриллюэна / Brillouin theorem	75
2.3. Неограниченные по спину уравнения Хартри – Фока Spin-unrestricted Hartree – Fock method	78
2.3.1. Теорема Купманса / Koopmans theorem	81
2.4. Ограниченный метод Хартри – Фока и его развитие Restricted Hartree – Fock method and its development	83
2.5. Метод Хартри – Фока – Рутана / Hartree – Fock – Roothaan method	87
2.5.1. Матрица плотности / Density matrix	89
2.5.2. Матрица Фока и энергия / Fock matrix and energy	90
2.5.3. Метод ОХФО для открытых оболочек / ROHF method for open shells	
Литература / References	95

2.6. Ko	рреляция электронов / Correlation of electrons	99
	етод конфигурационного взаимодействия onfigaration interaction method	101
2.	7.1. Теорема Несбета / Nesbet theorem	103
2.	7.2. О полном и усеченном КВ / About full and truncated CI	105
2.	7.3. Configuration Interaction in the Second Quantization Represen Basics with Applications to Benzyl Radical up to Full CI	tation: 107
	2.7.3.1. Introduction	107
	2.7.3.2. The Second Quantization and CI Method	108
	2.7.3.3. Hole Formalism	111
	2.7.3.4. Expansion of the Physical Value Operators over the <i>N</i> -products	113
	2.7.3.5. General Approach to Calculation of the Matrix Elemen	ıts 116
	 2.7.3.6. Matrix Elements of the Physical Value Operators for Molecules and Radicals with Account of Singly and D Excited Configurations as an Example of General App 2.7.3.6.1. Basis Vectors 2.7.3.6.2. Elements of the CI matrix 2.7.3.6.3. Brillouin Theorem and its Analog for Radic 2.7.3.6.4. Calculation of Certain One-particle Properti 	roach 120 122 als 123
	2.7.3.7. Exact Solution for a Seven-electron System Using Ful	1 CI
	2.7.3.7.1. Configurations and Details of Computation	128
	2.7.3.7.2. Discussion of Results	132
	2.7.3.8. Determinantal Method to Derive the Electron Density Bond Order Matrix and the Spin Density with an According All Doubly Excited Configurations for Molecular States	ount of
	2.7.3.8.1. The Wave Functions	137
	2.7.3.8.2. The Expectation Value of a One-electron Op	perator
	2.7.3.8.3. The Electron Density – Bond Order Matrix the Spin Density	and 140
	2.7.3.8.4. Some conclusions	143
Referen	nces	144

2.8. Многоконфигурационная теория ССП / Multi-configuration	onal SCF theory 147
2.8.1. О методах МК ССП / About MCSCF methods 2.8.2. Метод одноэлектронного гамильтониана в МК т The one-electron Hamiltonian method in MCSCF theory	147 геории ССП 148
2.8.2.1. Общая постановка задачи / General formul	ation 148
2.8.2.1.1. Методы оптимизации орбитал	ей, основанные
на вариационных уравнениях Эйлера / М	Methods for orbital
optimization based on the variational Euler equati	ons 151
2.8.2.1.2. Градиентный метод оптимизаг	ции орбиталей /
The gradient method of orbital optimization	158
2.8.2.2. Метод ОГ в МК теории ССП / ОЕН method	od in MCSCF theory
2.8.2.2.1. Квадратичная аппроксимация	энергетической
поверхности в пространстве элементов	унитарной
матрицы преобразования орбиталей /	162
Quadratic approximation of the energy surface in elements of the unitary matrix of orbital transform	-
2.8.2.2.2. Построение ОГ первого прибл Construction of the first approximation OEH	ижения / 165
2.8.2.2.3. Выбор параметров ОГ / Choice	of OEH parameters
2.8.2.2.4. Построение ОГ второго прибл	
Construction of the second approximation OEH	
2.8.2.2.5. Улучшенный метод ОГ первог	о приближения /
Improved method of the first approximation OEH	H 170
2.8.2.2.6. Матричная формулировка мет	
вычислительная схема / Matrix formulation and its computational scheme	of the OEH method
2.8.2.2.7. Тестирование методов ОГ в ра	мках МК теории
$CC\Pi$ / Testing of the OEH methods in MCSCF to	theory 176
2.8.2.2.7.1. π-Сопряженные мо	олекулы / 176
π -Conjugated molecule	
2.8.2.2.7.1.1. Ураци	
Uracyl and polyene C ₈	
2.8.2.2.7.1.2. Полис	
урацил и бензильн Polyenes C_6 , C_8 , C_{10} , u	
2.8.2.2.7.2. Молекула LiH <i>ab i</i>	nitio / 195
LiH molecule ab initio	
2.8.2.2.7.2.1. К пос	тановке задачи /
Statement of the proble	em 195
2.8.2.2.7.2.2. Мето	дика расчета /
Calculation procedure	197
2.8.2.2.7.2.3. Расче	
кривой, спектроск	
констант и диполь	
Calculation of potentia	l curve,

Discussion of the energy results 2.8.2.2.7.2.5. Корреляция во внутренней оболочке / Correlation in the internal shell	206 207
2.8.2.2.7.2.6. Обсуждение орбитальной структуры 2 МК волновых функций / Discussion of the orbital structure of MC wave functions	208 on
The OEH method in the single-configurational SCF theory 2.8.2.3.1. Построение одноэлектронных гамильтониан в одноконфигурационном приближении / Construction of the OEHs in the single-configurational approximation 2.8.2.3.2. Стандартные ОГ / The standard OEHs	of 211 213 216
	221
2.9. Фермионные редуцированные матрицы плотности в квантовой хими The fermion reduced density matrices in quantum chemistry	ии / 225
2.9.1. Введение / Introduction	225
2.9.2. Определения / Definitions	225
2.9.3. Редуцированная матрица плотности как интегральный операто The reduced density matrix as an integral operator	op/ 230
2.9.4. Собственные значения редуцированных матриц плотности / 2 The eigenvalues of reduced density matrices	231
2.9.5. Собственные функции редуцированных матриц плотности / 2 The eigenfunctions of reduced density matrices	237
2.9.6. Носитель и ранг редуцированных матриц плотности / The support and the rank of reduced density matrices	239
2.9.7. Редуцированные матрицы плотности для однодетерминантны функций / Reduced density matrices for the single-determinantal functions	
2.9.8. Редуцированные матрицы перехода / Reduced transition matrices	245
Литература / References	247

II. Расчет молекул *ab initio* на гауссовых функциях II. *Ab initio* calculation of molecules on gaussian functions

Глава 3. Вычисление молекулярных интегралов / Chapter 3. Calculation of molecular integrals	249
3.1. О вычислении интегралов на экспоненциальных функциях / To calculation of integrals over exponential functions	249
3.2. Вычисление молекулярных интегралов с гауссовыми функциями / Calculation of molecular integrals with gaussian functions	253
3.3. Сравнение слэтеровских и гауссовых функций в качестве базисных Comparison of slater and gaussian functions as basis functions	/ 259
Глава 4. Расчет атомов методом разложения и выбор гауссовых базисных функций. Конфигурации $1s^22s^22p^n$ Chapter 4. Calculation of atoms by the expansion method and choice of gaussian functions.	263
Configurations $1s^2 2s^2 2p^n$	
Введение / Introduction	263
4.1. О выборе оптимальных параметров в разложении атомных функций гауссовым / To choice of optimal parameters in the expansion of atomic functions over gaussian ones	
4.2. Расчет атомов в базисе гауссовых функций / Calculation of atoms in the gaussian basis	268
4.3. Систематический способ получения гауссовых базисных функций д атомных и молекулярных расчетов / Systematic approach to obtain gaussian basis functions for atomic and molecular calculations	цля 277
Глава 5. Расчет электронной структуры молекул в ограниченных базисах безузловых гауссовых функций Chapter 5. Calculation of electronic structure of molecules in the restricted spherical lobe gauss	283
5.1. Аппроксимация функций, обладающих выделенными осями симметрии, посредством сферических гауссовых функций / Approximation of functions having a selected symmetry axes by spherical gaussians	283
5.2. О программе ФУГА, о точности вычисления интегралов, выборе значений сдвигов и об инвариантности расчетов при поворотах осей координат / About the FUGA program, the accuracy of integral calculations, the choice the shift values, and about the computational invariance relative to rotations of the coordinates	
5.3. Базис $7s3p$ для атомов второго периода, способы его контрактации расчет молекул в таких ограниченных базисах / Basis $7s3p$ for atoms of the second period, the ways of its contraction and molecular calculations with such a restricted basis set	290
5.4. Особенности расчетов в ограниченных базисах гауссовых функций Pecularities of the calculations with the restricted basis of gaussian functions Литература / References	298 307

III. Избранные результаты III. Selected topics

Глава 6. Электронная и спиновая структура бензильного радикала <i>ab initio</i> Chapter 6. <i>Ab initio</i> electronic and spin structure of the benzyl radical	313
6.1. Введение / Introduction	313
6.2. Расчет электронных оболочек бензильного радикала неограниченным методом Хартри — Фока на гауссовом базисе / Calculation of electronic structure of the benzyl radical by UHF method with gaussian basis	
6.3. Обсуждение результатов расчета / Discussion of calculation results	315
6.4. Метод полного проектирования волновой функции НХФ на состоян с определенной спиновой мультиплетностью / Full projection techniques of the UHF wave function onto the state with pure spin multiplicity	
6.5. Орбитальный анализ электронной и спиновой заселенности атомов бензильного радикала без проектирования / Orbital analysis of electron and spin population of atoms in the benzyl radical without spin projection	322
6.6. Электронное строение бензильного радикала в модели НХФ с проектированием волновой функции на дублетное состояние / Electronic structure of the benzyl radical in the UHF model with the wave function projection onto the doublet state	327
Литература / References	333
Глава 7. Анализ взаимодействия иона ${\rm Li}^+$ с молекулой азота Chapter 7. Analysis of interaction of ${\rm Li}_+$ ion with nitrogen molecule	335
7.1. Введение / Introduction	335
 7.2. Орбитальные базисы / Orbital basis 7.2.1. Орбитальный базис иона Li⁺/ Orbital basis for Li⁺ ion 7.2.2. Орбитальный базис атома N / Orbital basis for atom N 	337 337 337
7.3. Результаты расчета иона Li^+ и молекулы N_2 / Calculation results for Li^+ ion and molecule N_2 7.3.1. Ион Li^+ / Ion Li^+	338338
$7.3.2.$ Молекула N_2 / Molecule N_2	338
7.4. Результаты расчета и анализ энергии взаимодействия иона Li^+ с молекулой N_2 / Results of calculations and analysis of energy of interaction between Li^+ ion and molecule N_2	341
Литература / References	354

	Фрагментация, конформации и перегруппировка молекул в	250
	электрическом поле Fragmentation, conformations, and decomposition of molecules in electric field	359
8.1.	Фрагментация электронным ударом / Fragmentation by the electron impact	359
8.2.	Фрагментация электрическим полем / Fragmentation by electric field	370
	Цикл киевских исследований по полевой фрагментации A series of Kiev studies on the field fragmentation	371
	8.3.1. Метод расчета / Method of calculation	372
	8.3.2. Фрагментация альдегидов: этаналь, пропаналь и бутаналь / Fragmentation of aldehydes: ethanal, propanal, and butanal	373
	8.3.3. Фрагментация молекул ацеталей / Fragmentation of acetal molecules	393
	8.3.4. Фрагментация и водородная перегруппировка метиламина / Fragmentation and hydrogen rearrangement in methylamine	402
	8.3.5. Конформационный анализ молекулы диоксана во внешнем однородном электрическом поле / Conformation analysis of dioxane molecule in external homogeneous electric field	416
Литерату	ypa / References	422
Chapter 9	9. Quantum-chemical Studies of Quasi-one-dimensional Electron System	S
9.1.	Introduction	427
	Review of Local Electronic States in Long Polyene Chains in the Tight-binding Model	427
	9.2.2. Single Substitution9.2.3. Double Substitution	428 431 436 441
9.3.	The Generalized Hartree – Fock Method and Its Versions	446
	9.3.1. Properties of solutions of the generalized Hartree – Fock equations and their applications	s 458
	Electronic Structure of Long Neutral Polyene Alternant Radicals by the DODS Method	467
	9.4.2. Calculation of Properties of Long Neutral Polyene Radicals by the	
		471 476

9.5	5. The Influence of an Impurity Atom on π -electronic Structure of Long Polyenes using the UHF Approach	481
	9.5.1. The UHF Solution for Long Polyene Chains with an Impurity Ato9.5.2. Local States9.5.3. Appendix	om 487 490
9.6	δ . Basics of π-Electron Model of Cumulenes	493
9.7	7. Electronic Structure of Long Cumulene Chains in the Extended Hartree – Fock Method Compared with its Unrestricted Version	500
	9.7.1. The UHF equations for long polyene chains9.7.2. Electronic Structure of Long Cumulene Chains9.7.3. EHF and UHF Methods when Applied to Large Electronic System9.7.4. Some Conclusions	501 504 ms 514
9.8	3. Coexistence or Contradiction of the Peierls- and Mott-type Instabilities Quasi-one-dimensional Systems	in 515
	9.8.1. Peierls and Mott Instabilities at $T = 0^{\circ} K$	517
	9.8.2. Finite Temperatures	524
9.9	O. Coexistence of Mott and Peierls Instabilities in Quasi-one-dimensional Systems	526
	9.9.1. The Method of Calculations and Qualitative Evaluations	527
9.1	0. Conclusions & Perspectives	533
Referen	ices	539
Chapter	10. Modeling of the Short-Range Order for Polymers by the Ideal Peak Method	549
10	.1. Introduction	549
10	.2. Experimental and computation methods	551
10	.3. Methods of conformational and modeling calculations	556
10	.4. Experimental data and results of calculations	558
10	.5. Results of conformational and modeling computations	560
10	.6. Discussion	564
10	.7. Conclusion	574
Referen	ices	575

Chapter 11. Excursus to chemical topology	579
11.1. Coding system for quasi-polycyclic structures	579
11.1. 1. Introduction to the coding system	579
	580
11.2. Analytical formulae for the enumeration of substitutional isomers of plan Molecules	nar 588
11.2. 1. Introduction	588
11.2. 2. The case when $G' = 0$	589
	590
	591
	592
References	595
Приложения:	
Appendices:	
П-1. Фундаментальные постоянные и энергетические эквиваленты физических величин / Fundamental constants and energy equivalents of physical quantities	597
П-2. Формализм дираковских векторов «бра» и «кет» / The formalism of the Dirac "bra" and "ket" vectors	598
П-3. Перестановки и их основные свойства / Permutations and their basic properties	505
П-4. Интерпретация электронных возбуждений в молекулах посредством чисел заполнения естественных орбиталей на примере возбуждения $1^2B_2 \rightarrow 2^2B_2$ бензильного радикала / The interpretation of electronic excitations in molecules via occupation numbers of natural orbitals with an example of the excitation $1^2B_2 \rightarrow 2^2B_2$ in benzyl radical	
П-5. Сводка формул теории возмущения Рэлея – Шредингера вплоть до третьего порядка (невырожденный случай) / A summary of the Rayleigh – Schrödinger perturbation theory up to the third order (non-degenerate case)	511
П-6. Асимптотика волновой функции молекулы на больших расстояниях Asymptotics of the molecular wave function at large distances	s / 512
П-7. Расчет равновесной конфигурации бензильного радикала в модели электронно-колебательного взаимодействия с дальнейшим учетом полного КВ в π-приближении / Calculation of equilibrium configuration of the benzyl radical according to electronic vibrational interaction model with further accounting for the full CI	513 c-

		Метод количественной оценки геометрической конфигурации бензильного радикала с учетом деформации σ -остова / Method of quantitative evaluation of geometrical configuration of the benzyl radical with an account of σ -core deformation	615
		Многоконфигурационные расчеты в π -приближении бензильного радикала в его равновесной геометрии вплоть до полного KB / Multiconfigurational calculations in π -approximation of the benzyl radical at its equilibrium geometry up to the full CI	624
		Расчет и интерпретация колебательного спектра бензильного радикала / Calculation and interpretation of vibrational spectra of the benzyl radical	631
Лит	ерату	ypa	636
П-8.	•	бликации по ион-молекулярным взаимодействиям / ications on ion-molecular interactions	638
П-9.	свой	йств фреонов /	640
	New	invariants of weighted graphs for calculating the critical properties of freons	
	П-9.	.1. Критические свойства фреонов как объект исследования / Critical properties of freons as objects of study	641
	П-9.	.2. Проблема выбора инвариантов и параметров / Choosing invariants and parameters	643
	П-9.	.3. Обоснование индекса парасочетаний / Substantiating the matching index	645
	П-9.	.4. Вычисление индекса парасочетаний / Calculating the matching index	647
	П-9.	.5. Параметризация и расчет T_c и P_c фреонов / Parameterizing and calculating the T_c and P_c of freons	65 0
		П-9.5.1. Этап 1: Hepaвeнства / Stage 1: Inequalities	650
		П-9.5.2. Этап 2: Оптимизация / Stage 2: Optimization	653
		П-9.5.3. Этап 3: Расширение / Stage 3: Extension	653
		П-9.5.4. Этап 4: Усложнение / Stage 4: Complication	659
	П-9	.6. Параметризация и расчет V_c фреонов / Parameterizing and calculating the V_c of freons	660
Пит			663 664

І. Методы расчета электронной структуры молекул

Введение

"The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws lead to equations much too complicated to be soluble."

P. A. M. Dirac

Proc. Royal Soc. (London), **123A**, 714 (1929)

В настоящее время ситуация с решением молекулярного уравнения Шредингера, в том числе релятивистского, резко изменилась в результате взрывного экспоненциального роста (закон Мура) вычислительной мощности компьютеров в ходе стремительного развития полупроводниковой кремниевой технологии, микро- и наноэлектроники и спинтроники. В самом начале 70-х годов прошлого века, когда в Киеве создавалась первая в СССР программа ФУГА неэмпирического расчета молекул [1 – 4], расчеты велись на самой скоростной в то время ЭВМ БЭСМ-6. Расчет одной молекулы Н₂О в весьма ограниченных базисах гауссовых функций занимал 5 *мин*, а димера (H₂O)₂ – уже 45 *мин*, и это только для одной геометрической конфигурации атомных ядер. Сегодня время расчета молекул *аb initio* уменьшилось на много порядков. Квантовохимические расчеты в нано- и мезофизике, в химии, фармакологии и молекулярной биологии стали рутинными.

Предельное значение длины полевого транзистора в Si-нанотехнологии, когда транспорт электрона от истока к стоку протекает без туннелирования, определен в 13 μ [5], тогда как фундаментальный предел длины канала проводимости составляет 1.5 μ при T=300~K [6]. Он следует из принципа неопределенности Гейзенберга и принципа Ландауэра стирания одного бита информации [7 – 9], согласно которому соответствующая энергия

$$E = kT \ln 2 = 0.017 \text{ } 9B \quad (T = 300 \text{ } K)$$

и который сравнительно недавно был подтвержден экспериментально [10]. Нет основания полагать, что этот фундаментальный предел длины канала проводимости будет достигнут в ближайшем будущем. Надежды в крупномасштабных квантовохимических расчетах возлагают в будущем на квантовые компьютеры [11, 12]. Методические вопросы квантово-химических вычислений отработаны при расчете основного хартри – фоковского состояния молекулы Н₂ в ограниченном базисе с использованием оптического квантового компьютера [13, 14], а затем и основного состояния молекулы LiH [15].

Эта глава вводная и содержит такие общеизвестные результаты и понятия как приближение Борна — Оппенгеймера для молекулярного уравнения Шредингера, спин-орбитали и многоэлектронные спиновые состояния, детерминанты Слэтера и вычисление матричных элементов одно- и двухэлектронных операторов на слэтеровских детерминантах.

Для углубленного изучения квантовой химии рекомендуем учебники [16 – 20].

Далее повсеместно используется система атомных единиц как это обычно удобно в физике атомов и молекул (табл. 1).

Таблица 1 Атомные единицы и их значения в системе СИ

Атомные единицы	Величины	Значения в СИ
$1\hbar = \frac{h}{}$	Редуцированная	1.055×10 ⁻³⁶ Дж · с
$1\hbar = \frac{h}{2\pi}$	постоянная Планка	
$1m_e$	Масса электрона	$9.109 \times 10^{-31} \kappa c$
1e	Заряд протона	$1.602 \times 10^{-19} K\pi$
$1a_0$	Боровский радиус	$5.292 \times 10^{-11} M$
$1E_h$	Энергия Хартри	4.360×10 ⁻¹⁸ Дж
$1k = \frac{1}{}$	Коэффициент	$8.988\times10^9 H\cdot \text{m}^2/\text{K}\text{n}^2$
$4\pi\varepsilon_0$	пропорциональности в	
	законе Кулона для	
	вакуума	

Численные значения атомных единиц в системе СИ основаны на значениях фундаментальных констант, приведенных в Приложении П-1.

Глава 1. Гамильтонианы и волновые функции

1.1. Приближение Борна – Оппенгеймера

Поскольку электроны намного легче атомных ядер, они мгновенные положения ядер атомов и «движутся» быстрее чем ядра, тогда как ядра уже «чувствуют» только усредненный потенциал пространственно распределенного электронного облака. Электронная энергия будет разной при различных конфигурациях ядер. Эта электронная энергия, дополненная взаимного отталкивания энергией ядер, определяет гиперповерхность потенциальной энергии (ППЭ), управляющую движением ядер. Такой подход называют разделением электронных и ядерных движений по Борну и Оппенгеймеру, или иначе приближением Борна – Оппенгеймера [21]. На самом электронно-колебательное взаимодействие, место

уравнения, описывающие движения электронов и ядер, связаны между собой. В большинстве задач квантовой химии это взаимодействие мало и им обычно пренебрегают.

Запишем независящее от времени уравнение Шредингера:

$$\hat{H}(R,r)\Psi(R,r) = E\Psi(R,r), \qquad (1)$$

где $\{R\}$ и $\{r\}$ есть наборы координат ядер и электронов, соответственно, а полный молекулярный гамильтониан в нерелятивистском приближении

$$\hat{H}(R,r) = -\sum_{\alpha=1}^{N_N} \frac{\hbar^2}{2M_{\alpha}} \Delta_{\alpha} + \left(-\sum_{i=1}^{N_e} \frac{\hbar^2}{2m_e} \Delta_i\right) + V(R,r), \qquad (2)$$

где суммы есть операторы кинетической энергии ядер $\hat{T}_{\scriptscriptstyle N}$ и электронов $\hat{T}_{\scriptscriptstyle e}$, соответственно, а потенциальная энергия в атомных единицах (табл. 1)

$$V \equiv V(R,r) = -\sum_{\alpha=1}^{N_N} \sum_{i=1}^{N_e} \frac{Z_{\alpha}}{r_{\alpha i}} + \sum_{\alpha < \beta} \frac{Z_{\alpha} Z_{\beta}}{R_{\alpha \beta}} + \sum_{i < j} \frac{1}{r_{ii}} \equiv V_{eN} + V_{NN} + V_{ee}.$$
 (3)

Запишем решение уравнения (1) в виде произведения электронной волновой функции в поле закрепленных ядер ($\{R\} = Const$) и ядерной волновой функции

$$\Psi(R,r) \approx \Psi_{e}(r;R)\Psi_{N}(R), \tag{4}$$

где смысл значка «≈» поясним позже, а параметрическая зависимость электронной волновой функции от координат ядер подчеркнута в (4) значком «;». Такая запись полной волновой функции в виде произведения чисто электронной и ядерной волновых функций позволяет свести решение (1) к решению двух отдельных уравнений – электронного и ядерного.

Электронное уравнение Шредингера имеет вид

$$\hat{H}_e \Psi_e(r;R) = E(R) \Psi_e(r;R), \qquad (5)$$

где электронный гамильтониан учитывает также энергию межъядерного отталкивания:

$$\hat{H}_e = \hat{T}_e + V(R, r) = -\sum_{i=1}^{N_e} \frac{\hbar^2}{2m_e} \Delta_i + V(R, r)$$

или в атомных единицах

$$\hat{H}_e = \hat{T}_e + V(R, r) = -\sum_{i=1}^{N_e} \frac{1}{2} \Delta_i + V(R, r).$$
 (6)

Электронное уравнение (5) имеет множество решений $\Psi_e(r;R)$, каждое из которых определяет ППЭ E(R) для основного и возбужденных состояний, каждая из которых может быть далее использована как потенциальная энергия для изучения движения ядер.

Ядерное уравнение имеет вид

$$\hat{H}_N \Psi_N(R) = E_N \Psi_N(R), \qquad (7)$$

в котором ядерный гамильтониан

$$\hat{H}_{N} = \hat{T}_{N} + E(R) = -\sum_{\alpha=1}^{N_{N}} \frac{\hbar^{2}}{2M_{\alpha}} \Delta_{\alpha} + E(R),$$
 (8)

а волновая функция $\Psi_{N}(R)$ зависит только от ядерных координат.

Покажем почему выражение (4) не может быть точным равенством. Подставим (4) в полное уравнение Шредингера (1), а именно:

$$\hat{H}(R,r)\Psi(R,r) = \hat{H}(R,r)\Psi_e(r;R)\Psi_N(R). \tag{9}$$

При исследовании этого уравнения проблемы вызывает кинетическая энергия ядер

$$\hat{T}_N = -\sum_{\alpha} \frac{\hbar^2}{2M_{\alpha}} \Delta_{\alpha} \,, \tag{10}$$

в записи которой, как и везде далее, опущены значения индекса суммирования, поскольку они очевидны, а оператор Лапласа

$$\Delta_{\alpha} = \frac{\partial^2}{\partial X_{\alpha}^2} + \frac{\partial^2}{\partial Y_{\alpha}^2} + \frac{\partial^2}{\partial Z_{\alpha}^2} \equiv \nabla_{\alpha}^2.$$
 (11)

При раскрытии уравнения (9) встретятся вторые производные по декартовым координатам ядер. Например, производная по X_{α} -координатам имеет вид:

$$\frac{\partial^{2}}{\partial X_{\alpha}^{2}} [\Psi_{e}(r;R)\Psi_{N}(R)] = \Psi_{N} \frac{\partial^{2}\Psi_{e}}{\partial X_{\alpha}^{2}} + 2 \frac{\partial \Psi_{e}}{\partial X_{\alpha}} \frac{\partial \Psi_{N}}{\partial X_{\alpha}} + \Psi_{e} \frac{\partial^{2}\Psi_{N}}{\partial X_{\alpha}^{2}}, \tag{12}$$

и аналогично по координатам Y_{α} и Z_{α} . Собирая все вместе, получаем:

$$-\sum_{\alpha} \frac{\hbar^2}{2M_{\alpha}} \Delta_{\alpha} [\Psi_e(r;R) \Psi_N(R)] = -\sum_{\alpha} \frac{\hbar^2}{2M_{\alpha}} [\Psi_N \Delta_{\alpha} \Psi_e + 2(\nabla_{\alpha} \Psi_e \nabla_{\alpha} \Psi_N) + \Psi_e \Delta_{\alpha} \Psi_N], (13)$$

где первые два слагаемых в квадратных скобках содержат производные электронной волновой функции по координатам ядер, а второе и третье слагаемые содержат производные ядерной волновой функции по координатам ядер. Подобные производные не входят ни в электронное уравнение (5), ни в ядерное (7). Это означает, что решая сначала уравнение (5), а потом (7), как мы сейчас увидим, невозможно получить точное решение полного уравнения Шредингера (1). Эти неувязки, возникающие за счет движения ядер, приводят к не всегда пренебрежимо малому зацеплению между различными электронными состояниями, рассчитанными в приближении Борна — Оппенгеймера.

Обозначим сумму всех таких зацепляющихся неувязок

$$-\sum_{\alpha} \frac{\hbar^2}{2M_{\alpha}} [\Psi_N \Delta_{\alpha} \Psi_e + 2(\nabla_{\alpha} \Psi_e \nabla_{\alpha} \Psi_N)] \equiv \Sigma, \qquad (14)$$

тогда опуская в записи очевидные переменные и параметры, получаем

$$\hat{H}\Psi_{e}\Psi_{N} = \sum + \Psi_{e} \left(-\sum_{\alpha} \frac{\hbar^{2}}{2M_{\alpha}} \Delta_{\alpha} \Psi_{N} \right) + \left(-\sum_{i} \frac{\hbar^{2}}{2m_{e}} \Delta_{i} \Psi_{e} \Psi_{N} \right) + V \Psi_{e} \Psi_{N} =$$

$$= \sum + \Psi_{e} \hat{T}_{N} \Psi_{N} + \Psi_{N} (\hat{T}_{e} \Psi_{e} + V \Psi_{e}) = \sum + \Psi_{e} \hat{T}_{N} \Psi_{N} + \Psi_{N} E(R) \Psi_{e} = \quad (15)$$

$$= \sum + \Psi_{e} [\hat{T}_{N} + E(R)] \Psi_{N} = \sum + E_{N} \Psi_{e} \Psi_{N},$$

откуда следует, что произведение $\Psi_{e}(r;R)\Psi_{N}(R)$ не может быть точной собственной функцией полного уравнения Шредингера (1).

В рутинных расчетах обычно пренебрегают зацепляющимися неувязками (14). В них фигурируют производные электронной волновой функции, деленные на массы ядер, которые намного больше массы электрона. Поэтому неувязки малы. Они обычно намного меньше чем ошибки, которые всегда имеют место при решении самих уравнений, получающихся в приближении Борна – Оппенгеймера, особенно вблизи равновесных конфигураций молекул.

В случае проведения расчетов в т. наз. адиабатическом приближении (адиабатические процессы в термодинамике не имеют никакого отношения к этой не совсем удачной, но уже устоявшейся в квантовой химии терминологии) вычисляются средние значения неувязок по рассматриваемому электронному состоянию Ψ_a , а именно:

$$-\sum_{\alpha} \frac{\hbar^2}{2M_{\alpha}} (\langle \Psi_e | \Delta_{\alpha} | \Psi_e \rangle + 2 \langle \Psi_e | \nabla_{\alpha} | \Psi_e \rangle \nabla_{\alpha}), \qquad (16)$$

где, удобства ради, используются дираковские обозначения для матричных элементов (см. Приложение П-2), в этом случае диагональных. Эти средние добавляют к ядерному гамильтониану (8). Второе слагаемое в (16) является

линейным дифференциальным оператором ∇_{α} , зависящим от $\{R\}$ и действующим на ядерную волновую функцию $\Psi_{N}(R)$.

Полезно сравнить доступные точные результаты, полученные в разных приближениях для наиболее легкой молекулы — молекулы водорода. В табл. 2 сопоставлены энергии диссоциации H_2 , HD и D_2 , посчитанные в разных приближениях с учетом нулевой энергии колебаний.

Таблица 2 Энергии диссоциации молекул H_2 , HD и D_2 из наинизшего колебательного и наинизшего вращательного состояний, c_M^{-1} [22].

Метод	H_2	HD	D_2
Эксперимент	36113.6	36400.5	36744.2
Приближение Борна – Оппенгеймера	36112.2	36401.5	36745.6
Адиабатическое приближение	36118.0	36405.7	36748.3
Неадиабатические расчеты	36114.7	36402.4	36746.2

Это сопоставление показывает, что приближение Борна — Оппенгеймера дает блестящие результаты, по-видимому, за счет случайной компенсации ошибок вычислений. Неожиданно худшие результаты, полученные в неадиабатических расчетах связывают с тем, что в расчетах не был достигнут абсолютный минимум. Можно ожидать, что для молекул с более тяжелыми ядрами приближение Борна — Оппенгеймера будет работать еще точнее.

Большинство термических химических реакций протекают адиабатически в том смысле, что система участвующих в реакции атомов остается на ППЭ, отвечающей обычно основному электронному состоянию. Под неадиабатическими реакциями обычно подразумевают реакции с переходом с одной ППЭ на другую. Это имеет место при таких конфигурациях ядер, когда две ППЭ подходят достаточно близко друг к другу. Подробное обсуждение приближения Борна – Оппенгеймера можно найти в [18].

1.2. Волновые функции

1.2.1. Спин-орбитали

Спин-орбиталью принято называть одноэлектронную волновую функцию, зависящую от пространственных координат электрона x, y, z (радиус-вектора \vec{r}), так и от спиновой переменной σ :

$$\psi = \psi(\vec{r}, \sigma) \equiv \psi(x, y, z, \sigma). \tag{17}$$

Собственный момент импульса электрона, иначе спин, может принимать только два значения проекции спина на выделенную ось z: $\pm \hbar/2$. В атомных единицах переменная σ принимает два значения: $\pm 1/2$. Одноэлектронную волновую функцию рассматривают как вектор-столбец

$$\psi = \begin{pmatrix} \psi_1(\vec{r}) \\ \psi_2(\vec{r}) \end{pmatrix}, \tag{18}$$

в котором первая строка соответствует спину $\sigma = +1/2$, а вторая строка — спину $\sigma = -1/2$:

$$\psi = \begin{pmatrix} \psi_1(\vec{r}) = \psi(\vec{r}, +\frac{1}{2}) \\ \psi_2(\vec{r}) = \psi(\vec{r}, -\frac{1}{2}) \end{pmatrix}.$$
 (19)

Зависимость от спина выражают с помощью спиновых функций α и β :

$$\alpha \equiv \alpha(\sigma) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \beta \equiv \beta(\sigma) = \begin{pmatrix} 0 \\ 1 \end{pmatrix},$$
 (20)

или иначе, $\alpha\left(+\frac{1}{2}\right)=1$, $\alpha\left(-\frac{1}{2}\right)=0$, а $\beta\left(+\frac{1}{2}\right)=0$, $\beta\left(-\frac{1}{2}\right)=1$. Тогда спин-орбиталь общего вида

$$\psi(\vec{r},\sigma) = \psi_1(\vec{r})\alpha(\sigma) + \psi_2(\vec{r})\beta(\sigma). \tag{21}$$

На практике обычно используют спин-орбитали, соответствующие чистым одноэлектронным спиновым состояниям со спином «вверх» и «вниз»: $\psi(\vec{r})\alpha(\sigma)$ и $\psi(\vec{r})\beta(\sigma)$.

Спиновые операторы действуют в двухмерном пространстве спиновых функций α и β и представляются матрицами размера 2×2 :

$$\hat{s}_x = \frac{1}{2}\boldsymbol{\sigma}_x, \quad \hat{s}_y = \frac{1}{2}\boldsymbol{\sigma}_y, \quad \hat{s}_z = \frac{1}{2}\boldsymbol{\sigma}_z, \tag{22}$$

где они записаны в атомных единицах через матрицы Паули:

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$
 (23)

Заметим, что матрицы Паули в стандартных учебниках квантовой механики вводятся постулативно; вывод выражений для матриц Паули можно найти в [9].