Библиотечка СтатГрад

Подготовка к ОГЭ

ДИАГНОСТИЧЕСКИЕ РАБОТЫ

2016

0[3] **2016** ФГОС RNMNX ФИЗИКА **ИСТОРИЯ БИОЛОГИЯ** ГЕОГРАФИЯ **ЛИТЕРАТУРА** МАТЕМАТИКА РУССКИЙ ЯЗЫК **ИНФОРМАТИКА** ОБЩЕСТВОЗНАНИ

УДК 373:51 ББК 22.1я72 В55

Вишнякова Е. А. и др.

Физика. Подготовка к ОГЭ в 2016 году. Диагностические работы.

Электронное издание.

M.: МЦНМО, 2016. ISBN 978-5-4439-2453-3

Данное пособие предназначено для отработки практических умений и навыков учащихся при подготовке к экзамену по физике в 9 классе в форме ОГЭ. Оно содержит варианты диагностических работ по физике, содержание которых соответствует контрольно-измерительным материалам, разработанным Федеральным институтом педагогических измерений для проведения государственной итоговой аттестации. В книгу входят также ответы к заданиям и критерии проверки и оценивания выполнения заданий с развёрнутым ответом. Авторы пособия являются разработчиками тренировочных и диагностических работ для системы СтатГрад (http://statgrad.org).

Материалы книги рекомендованы учителям и методистам для выявления уровня и качества подготовки учащихся по предмету, определения степени их готовности к государственной итоговой аттестации.

Издание соответствует Федеральному государственному образовательному стандарту (ΦΓОС).

Подготовлено на основе книги:

Вишнякова Е. А. и др. Физика. Подготовка к ОГЭ в 2016 году. Диагностические работы. — М.: МЦНМО, 2016. — ISBN 978-5-4439-0837-3

Издательство Московского центра непрерывного математического образования 119002, Москва, Большой Власьевский пер., 11, тел. (499)241–08–04.

http://www.mccme.ru

[©] Коллектив авторов, 2016.

[©] МЦНМО, 2016.

Содержание

Инструкция по выполнению работы Справочные данные Вариант 1 4асть 1 Часть 2 1 Вариант 2 1 Часть 1 1 Часть 2 3 Вариант 3 3 Часть 1 3 Часть 2 3
Вариант 1 Часть 1 Часть 2 1 Вариант 2 1 Часть 1 1 Часть 2 3 Вариант 3 3 Часть 1 3
Часть 1 1 Часть 2 1 Вариант 2 1 Часть 1 1 Часть 2 3 Вариант 3 3 Часть 1 3
Часть 2 1 Вариант 2 1 Часть 1 1 Часть 2 3 Вариант 3 3 Часть 1 3
Вариант 2 1 Часть 1 1 Часть 2 3 Вариант 3 3 Часть 1 3
Часть 1 1 Часть 2 3 Вариант 3 3 Часть 1 3
Часть 2 3 Вариант 3 3 Часть 1 3
Вариант 3 3 Часть 1 3
Часть 1
Часть 2
Вариант 4
Часть 1
Часть 2
Вариант 5
Часть 1
Часть 2
Вариант 6
Часть 1
Часть 2
Система оценивания экзаменационной работы по физике
Ответы к заданиям с кратким ответом (часть 1)
Критерии оценивания заданий с развёрнутым ответом (часть 2)
Вариант 1
Вариант 2
Вариант 3
Вариант 4
Вариант 5
Вариант 6

Инструкция по выполнению работы

Работа состоит из двух частей, включающих в себя 27 заданий. Часть 1 содержит 22 задания с кратким ответом и одно задание с развёрнутым ответом, часть 2 содержит 4 задания с развёрнутым ответом.

На выполнение экзаменационной работы по физике отводится 3 часа (180 минут).

Ответы к заданиям 1-16, 21 и 22 записываются в виде одной цифры, которая соответствует номеру правильного ответа. Эту цифру запишите в поле ответа в тексте работы.

Ответы к заданиям 17–20 записываются в виде последовательности цифр в поле ответа в тексте работы.

В случае записи неверного ответа на задания части 1 зачеркните его и запишите рядом новый.

К заданиям 23–27 следует дать развёрнутый ответ. Задания выполняются на отдельном листе. Задание 24 экспериментальное, и для его выполнения необходимо воспользоваться лабораторным оборудованием.

При вычислениях разрешается использовать непрограммируемый калькулятор.

При выполнении заданий можно пользоваться черновиком. Записи в черновике не учитываются при оценивании работы.

Баллы, полученные Вами за выполненные задания, суммируются.

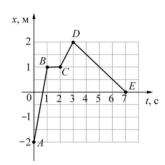
Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

Желаем успеха!

Справочные данные

Десятичные приставки			
Наименование	Обозначение	Множитель	
гига	Γ	109	
мега	M	10 ⁶	
кило	к	10^{3}	
гекто	Γ	10^{2}	
санти	c	10^{-2}	
милли	М	10^{-3}	
микро	мк	10^{-6}	
нано	Н	10 ⁻⁹	

Константы		
ускорение свободного падения на Земле	$g = 10 \frac{M}{c^2}$	
гравитационная постоянная	$G = 6,7 \cdot 10^{-11} \frac{\text{H} \cdot \text{m}^2}{\text{K}\Gamma^2}$	
скорость света в вакууме	$c = 3 \cdot 10^8 \frac{\mathrm{M}}{\mathrm{c}}$	
элементарный электрический заряд		


Плотность			
бензин	$710 \frac{\kappa \Gamma}{M^3}$	древесина (сосна)	$400 \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$
спирт	$800 \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$	парафин	900 $\frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$
керосин	$800 \frac{\text{KT}}{\text{M}^3}$	лёд	900 $\frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$
масло машинное	$900 \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$	алюминий	$2700 \frac{\text{K}\Gamma}{\text{M}^3}$
вода	$1000 \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$	мрамор	$2700 \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$
молоко цельное	$1030 \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$	цинк	$7100 \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$
вода морская	$1030 \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$	сталь, железо	$7800 \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$
глицерин	$1260 \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$	медь	$8900 \frac{K\Gamma}{M^3}$
ртуть	13 600 $\frac{\text{K}\Gamma}{\text{M}^3}$	свинец	$11\ 350\ \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$

Вариант 1

Часть 1

При выполнении заданий 1–16 и 21–22 в поле ответа запишите одну цифру, которая соответствует номеру правильного ответа.

Тело движется вдоль оси OX. На рисунке представлен график зависимости координаты x этого тела от времени t. Движению с наибольшей по модулю скоростью соответствует участок графика

- 1) *AB*
- 2) BC
- 3) *CD*
- 4) *DE*

Ответ:

Школьник решил провести эксперименты с двумя разными пронумерованными пружинами — № 1 и № 2. К свободно висящей пружине № 1 длиной 20 см школьник подвесил гирьку массой 100 г, в результате чего пружина растянулась до длины 22 см. К пружине № 2, имеющей в нерастянутом состоянии длину 30 см, школьник подвесил ту же самую гирьку, в результате чего эта пружина растянулась до длины 34 см. Сравните жёсткости пружин k_1 и k_2 .

- 1) $k_1 = k_2$
- 2) $k_1 > k_2$
- 3) $k_1 < k_2$
- 4) Жёсткости пружин нельзя сравнить, так как они в нерастянутом состоянии имеют различные длины.

3				ом модуль импульса	
	постоянная сила,		равен 2 Н. Через	ия начинает действо 5 секунд действия	
	1) 1 кг⋅м/с	2) 5 кг⋅м/с	3) 10 кг⋅м/с	4) 11 кг⋅м/с	
	Ответ:				
4	его центр перп	ендикулярно пло	скости обруча.	лг оси, проходящей ч Модуль центростр Модуль скорости т	еми-
	1) 0,02 м/с	2) 0,141 м/с	3) 0,2 м/с	4) 0.4 m/c	
	Ответ:				
5	размеры $a = 30$ с	м, $b = 20$ см и c (как показано на	= 10 см, начина	ллелепипеда, имею ют осторожно опус бина погружения бр	скать
		c b	a		
	1) 0,4 см	2) 2 см	3) 4 см	4) 10 см	
	Ответ:				
6	скоростью 6 м/с,	въезжает на шеј	роховатый участ	нтальной поверхност ок. Какой путь про сли коэффициент тр	йдёт
	1) 10 см	2) 60 см	3) 3 м	4) 6 м	
	Ответ:				

На горлышко стеклянной бутылки натянули пустой воздушный шарик, после чего поместили бутылку в тазик с горячей водой. Шарик надулся (см. рисунок). Почему это произошло?

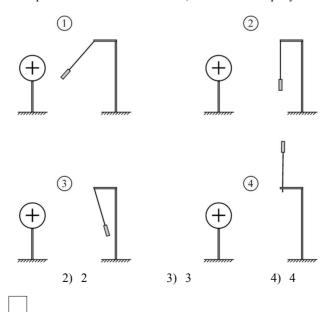
- Оболочка шарика нагрелась от бутылки посредством теплопроводности и расширилась.
- 2) При нагревании бутылки воздух в ней также нагрелся, расширился, проник в шарик и надул его.
- 3) В шарик проникли пары горячей воды, которые расширились и надули его.
- Давление атмосферного воздуха над тазиком с горячей водой уменьшилось, и это вызвало раздувание шарика.

O	
Ответ:	

Ведущий телепрограммы, рассказывающий о погоде, сообщил, что в настоящее время относительная влажность воздуха составляет 50 %. Это означает, что

- 1) Концентрация водяных паров, содержащихся в воздухе, в 2 раза меньше максимально возможной при данной температуре.
- 2) Концентрация водяных паров, содержащихся в воздухе, в 2 раза больше максимально возможной при данной температуре.
- 3) 50 % объёма воздуха занимает водяной пар.
- 4) Число молекул воды равняется числу молекул других газов, содержащихся в воздухе.

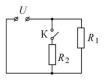
Два однородных кубика привели в тепловой контакт друг с другом (см. рисунок). Первый кубик изготовлен из цинка, длина его ребра 2 см, а начальная температура $t_1 = 1$ °C. Второй кубик изготовлен из меди, длина его ребра 3 см, а начальная ^{2 см}


температура $t_2 = 74.2$ °C. Пренебрегая теплообменом кубиков с окружающей средой, найдите температуру кубиков после установления теплового равновесия.

- 1) $\approx 20 \, ^{\circ}\text{C}$

- 2) $\approx 44 \,^{\circ}\text{C}$ 3) $\approx 60 \,^{\circ}\text{C}$ 4) $\approx 71 \,^{\circ}\text{C}$

Ответ:

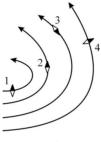

10 На штативе при помощи шёлковой нити подвешена сделанная из фольги незаряженная гильза. К ней медленно приближают положительно заряженный шар на изолирующей подставке. При достаточно близком положении шара гильза займёт положение, показанное на рисунке

Ответ:

1) 1

На рисунке приведена схема электрической цепи. В начале эксперимента ключ К разомкнут. Учитывая, что $R_1 = R_2 = R$, а напряжение, подаваемое на клеммы цепи, равно U, определите, под каким напряжением будет находиться резистор R_2 после замыкания ключа K.

1) *U*/2


2) *U*

3) 2*U*

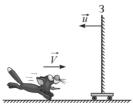
4) 3*U*/2

Ответ:

В магнитное поле, линии индукции которого показаны на рисунке, помещены небольшие магнитные стрелки с номерами 1, 2, 3 и 4, которые могут свободно вращаться. Южный полюс стрелки на рисунке светлый, северный – тёмный. В устойчивом положении находится стрелка с номером

1) 1

2) 2

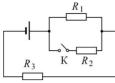

3) 3

4) 4

Ответ:

13

Котёнок бежит к плоскому зеркалу 3 со скоростью V = 0,2 м/с. Само зеркало движется в сторону котёнка со скоростью u = 0,05 м/с (см. рисунок). С какой скоростью котёнок приближается к своему изображению в зеркале?


1) 0.5 m/c

2) 0.45 m/c

3) 0.3 m/c

4) 0.25 m/c

На рисунке показана схема электрической цепи, где $R_1 = 2 \text{ Om}$, $R_2 = 2 \text{ Om}$, 14 $R_3 = 3 \text{ OM}.$

При разомкнутом ключе K во всей цепи выделяется мощность P_1 . После замыкания ключа мощность P_2 , выделяемая во всей цепи,

- 1) $P_2 = P_1$ 2) $P_2 = 2P_1/3$ 3) $P_2 = 0.8P_1$ 4) $P_2 = 1.25P_1$

Ответ:

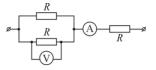
15

- Согласно планетарной модели атома, предложенной Э. Резерфордом, атом состоит из
 - 1) небольшого положительно заряженного ядра, в котором сосредоточена почти вся масса атома и вокруг которого движутся электроны
- 2) небольшого отрицательно заряженного ядра, состоящего из электронов, вокруг которого движутся положительно заряженные частицы
- 3) большого отрицательно заряженного ядра, в котором, как изюмины в пудинге, находятся положительно заряженные частицы
- 4) большого положительно заряженного ядра, в котором сосредоточена почти вся масса атома и в котором, как изюмины в пудинге, находятся электроны

Ответ:

- 16 Цена деления и предел измерения динамометра (см. рисунок) равны соответственно

- 1) 1 Н и 5 Н 2) 0,5 Н и 5 Н 3) 1 Н и 25 Н 4) 0,5 Н и 20 Н



Ответом к заданиям 17-20 является последовательность цифр. Запишите эту последовательность в поле ответа в тексте работы.

17

18

Ha изображена рисунке схема **участка** электрической цепи, содержащего три одинаковых резистора сопротивлением 2 Ом каждый, амперметр и вольтметр. К участку цепи приложено постоянное напряжение 6 В.

Определите значения следующих величин в СИ: общее сопротивление участка цепи; показание амперметра; показание вольтметра.

К каждому элементу первого столбца подберите соответствующий элемент второго и внесите в строку ответов выбранные цифры соответствующими буквами.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА

ЗНАЧЕНИЕ ФИЗИЧЕСКОЙ ВЕЛИЧИНЫ В СИ

- А) общее сопротивление участка цепи
- Б) показание амперметра
- В) показание вольтметра
- Б B Ответ:

- 1) 1
- 2) 1,5
- 3) 2
- 4) 3
- 5) 4

Два одинаковых маленьких шарика движутся по гладкой горизонтальной поверхности навстречу друг другу со скоростями V_1 и $V_2 = \frac{V_1}{2}$.

Определите, как изменятся в результате лобового абсолютно неупругого соударения этих шариков следующие физические величины: кинетическая энергия первого шарика; суммарная механическая энергия обоих шариков; суммарный импульс обоих шариков.

Для каждой величины определите соответствующий характер изменения:

- 1) увеличится;
- 2) уменьшится;
- 3) не изменится.

Запишите в таблицу выбранные цифры для каждой физической величины под соответствующими буквами. Цифры в ответе могут повторяться.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА

ХАРАКТЕР ИЗМЕНЕНИЯ

- А) кинетическая энергия первого шарика
- Б) суммарная механическая энергия обоих 2) уменьшится шариков
 - 3) не изменится

увеличится

В) суммарный импульс обоих шариков

P	1	Б	В