МОСКОВСКИЙ ПЕДАГОГИЧЕСКИЙ Государственный Университет

ЭНЕРГЕТИЧЕСКАЯ РЕЛАКСАЦИЯ КВАЗИЧАСТИЦ В СВЕРХПРОВОДНИКОВЫХ ПЛЕНКАХ НИТРИДА ТИТАНА И ЛЕГИРОВАННЫХ БОРОМ ПЛЕНКАХ АЛМАЗА

Москва 2017 Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский педагогический государственный университет»

А. И. Кардакова, С. А. Рябчун, П. П. Ан, Г. Н. Гольцман

ЭНЕРГЕТИЧЕСКАЯ РЕЛАКСАЦИЯ КВАЗИЧАСТИЦ В СВЕРХПРОВОДНИКОВЫХ ПЛЕНКАХ НИТРИДА ТИТАНА И ЛЕГИРОВАННЫХ БОРОМ ПЛЕНКАХ АЛМАЗА

Монография

МПГУ Москва • 2017

Рецензенты:

Г. М. Чулкова, доктор физико-математических наук, профессор кафедры общей и экспериментальной физики факультета физики и информационных технологий МПГУ

В. А. Ильин, доктор физико-математических наук, профессор кафедры общей и экспериментальной физики факультета физики и информационных технологий МПГУ

Кардакова, Анна Игоревна.

К219 Энергетическая релаксация квазичастиц в сверхпроводниковых пленках нитрида титана и легированных бором пленках алмаза : монография / А. И. Кардакова, С. А. Рябчун, П. П. Ан, Г. Н. Гольцман. – Москва : МПГУ, 2017. – 114 с.

ISBN 978-5-4263-0569-4

Монография посвящена экспериментальному исследованию процессов энергетической релаксации неравновесного резистивного состояния в сверхпроводниковых пленках нитрида титана (TiN) и легированных бором пленках алмаза (C:B).

Результаты экспериментального исследования дают новые сведения о характерных временах и механизмах энергетической релаксации в сверхпроводниковых пленках нитрида титана и легированных бором пленках алмаза. Данные сведения имеют важное значение при разработке и создании детекторов электромагнитного (ЭМ) излучения.

Монография предназначена для студентов старших курсов, аспирантов и начинающих исследователей, работающих в области сверхпроводниковой наноэлектроники и радиофизики.

> УДК 538.945 ББК 22.268.3

ISBN 978-5-4263-0569-4

© МПГУ, 2017 © Коллектив авторов, 2017

Оглавление

Введеі	Введение					
Глава	1. K	инетика процессов энергетической релако	ca-			
ции	тонки	их пленках сверхпроводников и нормальных м	/Ie-			
тал	лов		11			
1.1	Механ	низмы энергетической релаксации в тонких металли-	-			
	ческих	х пленках	. 11			
	1.1.1	Электрон - электронное рассеяние	. 11			
	1.1.2	Электрон - фононное взаимодействие	. 12			
1.2	Проце	ессы релаксации в сверхпроводниковых пленках	. 19			
1.3	Обзор	э экспериментальных работ по исследованию зависи-	-			
	мости	$(au_{e-ph}(T)$ в тонких пленках	. 23			
1.4	Выбор	р объекта исследования и постановка задачи исследо	-			
	вания	ι	. 25			
Б	0 17	U				
Глава	2. Me	тодики измерения своиств сверхпроводников	ых			
пле	нок и	технологии изготовления исследуемых обра	13- 07			
Ц ОВ	۱ <i>۲</i>		27			
2.1	мето	одики измерения основных характеристик сверхпро-	- 07			
	водни:	ковых пленок	. 21			
	2.1.1	Определение поверхностного сопротивления и	1			
		удельного сопротивления пленок в нормальном	4			
	010	состоянии	. 21			
	2.1.2	исследование зависимости сопротивления пленов	ί.			
		от температуры и определение плотности критиче	- 00			
	019		. 28			
	2.1.3	Определение коэффициента электронной диффу-	- 00			
	014	зии в сверхпроводниковых пленках	. 29			
	2.1.4	Выоор метода и обоснование	. 32			
	2.1.5	Общее описание метода определения времени энер-	-			
		гетической релаксации и модели электронного разо-	-			
	010	грева в сверхпроводниковых пленках	. 38			
	2.1.6	Описание экспериментальной установки	. 43			

2.2	Описание технологии изготовления образцов		
	2.2.1	Технология нанесения тонких сверхпроводниковых	
		пленок нитрида титана	48
	2.2.2	Сверхпроводниковые алмазные пленки, легирован-	
		ные атомами бора (C:B)	56
Глава	3. Ис	следование процессов энергетической релакса-	
ции	элек	тронов в сверхпроводниковых алмазных плен-	
ках,	леги	рованных бором	59
3.1	Экспе	риментальные результаты	59
3.2	Обсух	кдение экспериментальных результатов	65
	3.2.1	Резистивное состояние сверхпроводниковой пленки	65
	3.2.2	Режим I	70
	3.2.3	Режим II	75
	3.2.4	Режим III	79
Глава 4	4. Эл	ектрон - фононное взаимодействие в неупорядо-	
чен	ных п	ленках нитрида титана	83
4.1	Экспериментальные результаты		
	4.1.1	Исследование пленок TiN, осажденных методом	
		магнетронного распыления	83
	4.1.2	Исследование пленок TiN, изготовленных методом	
		атомно - слоевого осаждения	84
4.2	Обсух	кдение экспериментальных результатов	89
Заклю	чение		95
Литера	атура		97
-	-		

Глава 1. Кинетика процессов энергетической релаксации тонких пленках сверхпроводников и нормальных металлов

В данной главе представлена общая картина процессов энергетической релаксации неравновесных носителей в сверхпроводниках и нормальных металлах, при этом основное внимание уделяется времени протекания данных процессов.

1.1 Механизмы энергетической релаксации в тонких металлических пленках

Среди механизмов энергетической релаксации в нормальных металлах наиболее важными считаются электрон - электронное рассеяние и рассеяние электронов на фононах.

1.1.1 Электрон - электронное рассеяние

Процесс рассеяния соответствует передачи импульса и энергии при взаимодействии частиц. В чистом объемном металле, когда рассматривается баллистическое движение электрона, время энергетической релаксации электронов на поверхности Ферми за счет электрон - электронного взаимодействия определяется как [32, 33]:

$$\frac{1}{\tau_{ee}} = \frac{\pi^4}{64} \frac{\kappa}{p_F} \frac{k_B T^2}{\hbar \varepsilon_F} \propto \frac{k_B T^2}{\hbar \varepsilon_F}, \qquad (1.1)$$

где $\kappa^2 = 4\pi e^2 N_0$.

В неупорядоченном металле (с короткой длиной упругого рассеяния электрона, l < 1 нм) электрон - электронное взаимодействие изменяется по сравнению с чистым случаем, так как из - за примесного рассеяния движение электронов становится диффузионным. В таком случае вероятность электрон - электронных столкновений определяется также размерностью системы, которая зависит от соотношения геометрических

размеров объекта и характерной длины $L_T = \sqrt{\hbar D/(k_B T)}$, так называемой тепловой диффузионной длины. Данная длина определяет масштаб, на котором электроны теряют когерентность в результате теплового размытия их энергии [34].

В трехмерном случае, когда $d > L_T$, время электрон - электронного рассеяния определяется как [33, 35]:

$$\frac{1}{\tau_{ee}} = c \frac{1}{k_F l} \frac{(k_B T)^{3/2}}{\epsilon_F \sqrt{\hbar \tau}},\tag{1.2}$$

где $c = (3\sqrt{3\pi})/16\zeta(3/2)(\sqrt{8}-1) \cong 2.75, \tau = l^2/3D$ - время упругого рассеяния и l - длина свободного пробега электронов. В неупорядоченном металле скорость рассеяния за счет электрон - электронного взаимодействия значительно усиливается по сравнению с чистым случаем [35,36].

В случае тонких неупорядоченных пленок, когда $d < L_T$, скорость электрон - электронного рассеяния определяется как [37, 38]:

$$\frac{1}{\tau_{ee}} = \frac{e^2 R_{\Box} T}{2\pi} ln\left(\frac{\pi}{e^2 R_{\Box}}\right), \qquad (1.3)$$

где $R_{\Box} = \rho_n/d$ – поверхностное сопротивление тонкой пленки. Подобное выражение для τ_{ee}^{-1} в тонких неупорядоченных пленках было также предсказано в работе [39].

1.1.2 Электрон - фононное взаимодействие

Рассеяние электрона на колебаниях кристаллической решетки описывается в терминах поглощения и испускания фононов движущимся электроном. Фононы представляют собой квазичастицы, описывающие возбуждения кристаллической решетки с некоторым законом дисперсии $\omega = \omega_s(q)$, где q – квазиимпульс фонона, ω – его частота, а индекс s нумерует различные ветви фононного спектра (акустические, оптические, продольные, поперечные). Процесс рассеяния соответствует передаче импульса и энергии от электрона колебаниям решетки и наоборот.

Теория электрон - фононного взаимодействия хорошо разработана и понятна для объемных и чистых металлов, в которых длина свободного пробега электронов существенно превышает длину волны тепловых фононов. Однако во многих экспериментальных ситуациях исследование электрон - фононного взаимодействия осуществляется в тонких металлических пленках (с толщинами порядка 10 - 100 нм). В данном случае присутствие примесей, дефектов и границ раздела оказывает сильное влияние на электрон - фононное взаимодействие. В тонких неупорядоченных пленках, помимо чистого электрон - фононного взаимодействия, существуют и другие процессы рассеяния, такие как процессы упругого и неупругого рассеяния электронов на примесях. Эти механизмы интерферируют между собой и значительно модифицируют электрон - фононное взаимодействие по сравнению с чистым случаем.

Электрон - фононное взаимодействие в чистом объемном металле

Процесс электрон - фононного рассеяния состоит в том, что электрон, находящийся в состоянии с волновым вектором \mathbf{k} и энергией E_k , поглощает или испускает фонон (с волновым вектором \mathbf{q} и энергией $\hbar\omega_q$) и переходит в состояние с волновым вектором $\mathbf{k}' = \mathbf{k} \pm \mathbf{q}$ и энергией $E_{k'}$. При низких температурах можно пренебречь процессами переброса, так как импульс фонона мал, и, следовательно, квазиимпульс электрона меняется слабо. Используя золотое правило Ферми, можно записать скорость рассеяния электрона из состояния с волновым вектором \mathbf{k} в состояние с $\mathbf{k}' = \mathbf{k} \pm \mathbf{q}$ при одновременном поглощении (испускании) фонона:

$$\tau_{kk'}^{-1} = \frac{1}{(2\pi)^3} \int \frac{2\pi}{\hbar} M^2 \{ \delta(E_k - E_{k'} - \hbar\omega_q) [1 - f(E_{k'})] [n(q) + 1] - \delta(E_k - E_{k'} + \hbar\omega_q) [1 - f(E_{k'})] n(q) \} dq^3.$$
(1.4)

Первое слагаемое в правой части выражения записано для случая рассеяния электрона с испусканием фонона, а второе слагаемое – для случая с поглощением фонона. Величина M^2 представляет собой квадрат матричного элемента электрон - фононного взаимодействия. Функция $f(E_k)$ представляет собой распределение Ферми - Дирака для электронов, n(q) - распределение Бозе - Эйнштейна для фононов. Множитель $[1 - f(E_{k'})]$ показывает, что конечное состояние для электрона с волновым вектором k' свободно, а множители [n(q) + 1] и n(q) соответствуют спонтанному испусканию и поглощению фонона, соответственно.

Электрон - фононное взаимодействие вызвано колебаниями решетки, которые приводят к отличной от нуля локальной плотности заряда, что, в свою очередь, приводит к изменению энергии электрона. Для электрон - фононного взаимодействия удобным приближением является приближение скалярного деформационного потенциала [40], который связывает изменение уровня Ферми $\Delta \varepsilon_F$ с локальным изменением объема элементарной ячейки $\Delta V/V$:

$$\Delta \varepsilon_F = \varepsilon_F - \varepsilon_F^0 = -\frac{2}{3} \varepsilon_F \frac{\Delta V}{V}.$$
(1.5)

Для чистого металла при температурах, меньших температуры Дебая, взаимодействие электронов происходит только с низко энергичными акустическими фононами. В приближении скалярного деформационного потенциала существенное значение при взаимодействии имеет только продольная ветвь акустических фононов, и амплитуда локального изменения объема элементарной ячейки может быть записана как $|\Delta V|/V = \sqrt{\hbar q/2\rho\Omega u_s}$, и квадрат матричного элемента в формуле 1.4 оказывается равным $M^2 = \frac{\hbar q}{2\rho u_s\Omega} \left(\frac{2\varepsilon_F}{3}\right)^2$, где ρ_m и Ω – это плотность и объем металла, соответственно, u_s – скорость звука в материале. Таким образом, при температурах, много меньших температуры Дебая, температурная зависимость времени электрон - фононного взаимодействия $\tau_{e-ph}(T)$ для электрона на уровне Ферми при температуре T пропорциональна T^{-3} [33, 40]:

$$\tau_{e-ph}^{-1}(\varepsilon_F, T) = \frac{7\zeta(3)}{8\pi\hbar u_s^4 v_F \rho_m \Omega} \left(\frac{2\varepsilon_F}{3}\right)^2 \left(\frac{k_B T}{\hbar}\right)^3.$$
(1.6)

Выражение (1.6) получено при допушении, что электроны и фононы в металле описываются соответствующими распределениями с хорошо определенными эффективными температурами T_e и T_{ph} . Также предполагается, что закон дисперсии электрона квадратичен.

Считается, что в чистом металле электроны взаимодействуют только с продольными фононами. Однако, в работе [41] было показано, что при низких температурах (порядка 100 мК) нужно учитывать и поперечные фононы. В данной работе [41] скорость электрон - фононного взаимодействия $\tau_{e-ph}^{-1}(T)$ была рассчитана с учетом вклада продольных и поперечных акустических фононов:

$$\tau_{e-ph}^{-1}(\varepsilon_F, T) = \frac{7\zeta(3)\beta_l}{(k_F u_l)^2} \left[1 + \frac{16}{\pi^2} \left(\frac{u_l}{u_t}\right)^4\right] \left(\frac{k_B T}{\hbar}\right)^3, \quad (1.7)$$

где параметр $\beta_l = \left(\frac{2\varepsilon_F}{3}\right)^2 \frac{N_0}{2\rho u_l^2}$ характеризует взаимодействие электрона с продольными фононами, u_l – скорость звука для продольных фононов,

 u_t – скорость звука для поперечных фононов, N_0 - плотность состояний на уровне Ферми. В работе [41] также указано, что влияние поперечных фононов может оказаться существенным в области температур $T_2 < T < T_1$, где $T_1 = \frac{u_t}{c} \sqrt{v_F \kappa^2 u_t}$ и $T_2 = u_t l^{-1}$. При температурах $T > T_1$ считается, что электроны взаимодействуют только с продольными фононами. Согласно выражению (1.7) взаимодействие электронов с поперечными фононами приводит к увеличению τ_{e-ph}^{-1} приблизительно в 15 - 20 раз в сравнении со случаем, рассматривающем рассеяние электронов только на продольных фононах.

Электрон - фононное взаимодействие в неупорядоченном металле

Теоретически электрон - фононное время в неупорядоченных металлах исследовалось рядом авторов в течение нескольких десятилетий, однако были получены достаточноно противоречивые теоретические предсказания. В частности, предсказываются различные зависимости $\tau_{e-ph}(T) \sim T^{-p}$, в которых показатель степени p может принимать значения от 2 до 4.

Электрон - фононное взаимодействие в тонких неупорядоченных пленках рассматривается в диффузионном пределе, когда длина свободного пробега электрона *l* меньше длины волны теплового фонона $\lambda_T = \hbar u / k_B T$. Впервые проблема электрон - фононного взаимодействия в неупорядоченных металлах косвенно была рассмотрена А. Пиппардом [42]. В работе [42] была рассчитана скорость поглощения ультразвука в присутствии беспорядка. При низких температурах и низких частотах, этот процесс определяется взаимодействием фононов с электронами и характеризуется временем фонон - электронного рассеяния τ_{ph-e} . Данный результат можно применить к теоретическому расчету времени электрон - фононного взаимодействия au_{e-ph} , используя условие детального равновесия между электронной и фононной подсистемами: $c_e/\tau_{e-ph} = c_{ph}/\tau_{ph-e}$, где c_e и c_{ph} - электронная и фононная теплоемкости, соответственно. В работе [42] был сделан вывод, что в случае $q_T l \ll 1$ (где $q_T = \lambda^{-1}$ – волновой вектор теплового фонона) электрон - фононное взаимодействие ослабляется в $q_T l$ раз по сравнению с чистым случаем. Это обусловлено тем, что система имеет тенденцию поддерживать зарядовую нейтральность, и возникает увлечение фононов. Условие $q_T l \ll 1$ встречается в литературе как условие неэффективности Пиппарда [2,43]

и интерпретируется следующим образом. Малая длина свободного пробега l в неупорядоченных системах накладывает неопределенность на волновой вектор электрона k, так что $\Delta k \sim l^{-1}$. Следовательно, если при рассеянии волновой вектор электрона k меняется на величину, меньшую чем Δk , то первоначальное и конечное состояние электрона неразличимы в пределах данной неопределенности. Это равнозначно тому, что электрон не рассеялся. Таким образом, фононы со значениями волнового вектора $q_T \ll l^{-1}$ могут рассматриваться как неэффективные и исключаются из процесса рассеяния.

В дальнейшем проблема электрон - фононного взаимодействия в неупорядоченных металлах исследовалась в работах А. Шмита [2] и Й. Раммера [44]. Ключевое предположение в данных работах состоит в том, что рассеивающий потенциал дефектов и примесей полностью увлекается фононами, т.е. примесные атомы двигаются также как и атомамы решетки. При таком предположении, было найдено, что электрон - фононное взаимодействие, в случае $q_T l \ll 1$, также существенно ослабляется по сравнению с чистым случаем и определяется как:

$$\tau_{e-ph}(T)^{-1} \sim q_T l\left(\frac{1}{\tau_{e-ph}^0}\right) \propto T^4 l.$$
(1.8)

Данный результат соответствует теоретическими предсказаниями А. Пиппарда [42], а также независимо подверждается в работах [3,4].

Однако в случае рассеяния электронов на колеблющихся примесях, когда колебания примесей незначительно отличаются от колебаний атомов, формирующих решетку, теория предсказывает усиление электрон фононного взаимодействия [4]:

$$\tau_{e-ph}(T)^{-1} \sim T^2 l^{-1}.$$
 (1.9)

Такая ситуация может реализоваться, например, когда носители рассеиваются на жестких границах или примесях, имеющих массы, отличающиеся от масс атомов кристаллической решетки. В соответствии с обобщенной моделью, представленной в работе [4], для электрон - фононного взаимодействия в неупорядоченных металлах, можно выделить несколько случаев:

1. Когда $q_T l > 1$, скорость электрон - фононного рассеяния равна

Научное издание

Кардакова Анна Игоревна Рябчун Сергей Александрович Ан Павел Павлович Гольцман Григорий Наумович

ЭНЕРГЕТИЧЕСКАЯ РЕЛАКСАЦИЯ КВАЗИЧАСТИЦ В СВЕРХПРОВОДНИКОВЫХ ПЛЕНКАХ НИТРИДА ТИТАНА И ЛЕГИРОВАННЫХ БОРОМ ПЛЕНКАХ АЛМАЗА

Монография

Издается в авторской редакции

Управление издательской деятельности и инновационного проектирования МПГУ 119571, Москва, Вернадского пр-т, д. 88, оф. 446 Тел.: (499)730-38-61 E-mail: izdat@mpgu.edu

Подписано в печать 20.11.2017. Формат 60х90/16 Бум. офсетная. Печать цифровая. Объем 7,13 п. л. Тираж 500 экз. Заказ № 744.

