

Московский педагогический государственный университет

Н. А. Титова, А. И. Кардакова, М. Л. Щербатенко, В. В. Ковалюк, Ю. В. Лобанов

Детекторы на кинетической индуктивности для видимого, ближнего и дальнего инфракрасного диапазонов

Москва 2017

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский педагогический государственный университет»

Н. А. Титова, А. И. Кардакова, М. Л. Щербатенко, В. В. Ковалюк, Ю. В. Лобанов

Детекторы на кинетической индуктивности для видимого, ближнего и дальнего инфракрасного диапазонов

Монография

МПГУ Москва • 2017 УДК 538.945 ББК 22.268.3 Т454

Рецензент:

Г. М. Чулкова, доктор физико-математических наук, профессор кафедры общей и экспериментальной физики факультета физики и информационных технологий МПГУ

Титова, Надежда Андреевна.

Т454 Детекторы на кинетической индуктивности для видимого, ближнего и дальнего инфракрасного диапазонов : монография / Н. А. Титова, А. И. Кардакова, М. Л. Щербатенко, В. В. Ковалюк, Ю. В. Лобанов. – Москва : МПГУ, 2017. – 88 с. ISBN 978-5-4263-0566-3

Монография посвящена детекторам видимого, дальнего ближнего и дальнего ИК диапазонов на основе пленок TiN, исследование времени релаксации энергии в сверхпроводящих пленках алмаза, легированного бором, разработка и исследование сверхпроводникового однофотонного детектора на основе нанопроводника из NbN для когерентного детектирования слабых сигналов.

УДК 538.945 ББК 22.268.3

ISBN 978-5-4263-0566-3

- © MПГУ, 2017
- © Коллектив авторов, 2017

Оглавление

Определения, обозначения и сокращения	4
Введение	5
Глава 1. Кинетические процессы в тонких пленках сверхпроводников	10
1.1. Процессы энергетической релаксации в тонких сверхпроводниковых пленках	10
1.2. Метод экспериментального исследования времени энергетической релаксации и его обоснование	14
1.3. Время релаксации в тонких пленках с учетом эффекта фононного «узкого горла»	20
Глава 2. Исследование характеристик сверхпроводниковых наноструктур на основе тонких пленок нитрида титана TiN	31
2.1. Детектор на кинетической индуктивности	31
2.2. Обоснование выбора нитрида титана в качестве материала для детекторов на кинетической индуктивности	34
2.3. Изготовление образцов нано-структур на основе ультратонких сверхпроводниковых пленок нитрида титана	35
2.4. Методы измерения основных характеристик сверхпроводниковых пленок	39
2.5. Экспериментальное исследование времени энергетической релаксации в пленках TiN	44
Глава 3. Время электрон-фононного взаимодействия в сверхпроводящих пленках алмаза, легированного бором	52
3.1. Технология создания сверхпроводниковых алмазных пленок, легированных атомами бора (С:В)	52
3.2. Экспериментальные результаты по измерению времени энергетической релаксации при различных температурах	53
Глава 4. Сверхпроводниковый однофотонный детектор на основе нанопроводника из NbN для когерентного детектирования слабых	60
сигналов.	62
4.1. Исследование гетеродинного приемника на основе сверхпроводникового однофотонного детектора	62
4.2. Идея метода и экспериментальная установка	
Заключение	
Список используемых источников	

Введение

Сверхпроводящие пленки на диэлектрических подложках ключевой элемент для практических детекторов электромагнитного излучения, таких как сверхпроводниковые однофотонные детекторы SSPDs (от англ. Superconducting Single Photon Detector) [1], детекторы на кинетической индуктивности MKID (от англ. Microwave kinetic inductance detector) [2] и болометры на эффекте электронного разогрева HEBs(от англ. Hot Electron Bolometer) [3]. Все перечисленные типы детекторов на основе сверхпроводниковых материалов. Каждый тип детекторов проявил себя в последнее десятилетие. SSPDs в качестве самых быстродействующих из однофотонных детекторов, необходимых для счета фотонов в видимом и ближнем инфракрасном диапазонах. Эти детекторы уже коммерчески доступны И востребованы телекоммуникационных применениях. **MKIDs** являются масштабируемости перспективными благодаря И простоте большое пикселей. мультиплексирования В число Главное преимущество детекторов данного типа заключается в том, что простота изготовления сочетается cдоступностью одновременного считывания сигнала с большого количества элементов матрицы. В случае остальных типов сверхпроводниковых детекторов обычно ограничиваются отдельными пикселями или небольшими массивами из-за отсутствия эффективных И простых подключения к отдельному пикселю и мультиплексирования большого числа элементов. Сверхпроводниковый материал, выбранный для MKIDs детекторов, должен обладать значительными временами рекомбинации квазичастиц, соответствующими слабому электронфононному взаимодействию. HEBs, применяемые в качестве смесителей, являются наиболее чувствительными низкошумящими приборами для радиоспектроскопии в терагерцовом диапазоне. Используемые (нано-HEBs) качестве прямых детекторов перспективны ДЛЯ обнаружения низко энергетичных фотонов [4].

Оптимальное функционирование таких детекторов определяется балансом между поглощением излучения и механизмом охлаждения в материале детектора. В сверхпроводящем состоянии процессы релаксации, происходящие после перераспределения энергии между квазичастицами, определяются процессами рекомбинации в куперовских парах. Время рекомбинации экспоненциально возрастает с понижением температуры благодаря тому, что снижается доступность

квазичастиц. Масштаб времени рекомбинации определяется временем электрон-фононного взаимодействия [5]. В нормальном состоянии существуют два параметра, играющие основную роль в энергетической релаксации: время электрон-фононного взаимодействия и время ухода фононов в подложку. Первый параметр является свойством материала, в то время как второй параметр определяется толщиной пленки и акустическим рассогласованием между пленкой и подложкой. Поэтому процессов энергетической релаксации ключевая роль данном устройстве, основанном на неравновесных явлениях, детектора строго определяет зависимость времени электрон-фононного взаимодействия в данном материале.

Одной из стратегий в оптимизации характеристик детектора является выбор соответствующего материала. Выбор подходящего материала является комплексной проблемой, и начинать его нужно с подходящим временем электрон-фононного выбора материала с взаимодействия. Однако для разных типов детекторов требования различны. Для SSPDs необходимы материалы с быстрой электронфононной релаксацией для обеспечения быстрого отклика, материалы с подобными свойствами необходимы и для НЕВ смесителей для обеспечения большой рабочей полосы. Для MKIDs и нано-болометров на основе НЕВ, предпочтительнее материалы с продолжительной электрон-фононной релаксацией, обеспечивающей чувствительность и низкие шумы. Другим важным параметром, который обеспечивает шумовые свойства и геометрию детекторов является плотность состояний электронов N_0 . Для оптимизации шумовых характеристик детекторов следует выбирать материалы с малой плотностью состояний N_0 [4], [6]. Окончательный выбор определяет надежная технология создания тонких пленок с заданными Тс и сопротивлением. Для чувствительных сверхпроводящих детекторов очень важным является возможность достижения контролируемой подстройки критической температуры материала ДО требуемого значения.

Для успешного развития практических устройств необходимо более ясное представление о процессах энергетической релаксации в материале. Конечно, в силу сложности свойств такого объекта, зависящих от степени беспорядка и фононного спектра, исследование не позволит внести полную ясность в понимание процессов электронфононного взаимодействия в неупорядоченном материале. Но, точное

знание особенностей процесса электрон-фононного взаимодействия в данном материале необходимо для разработки практических сверхпроводниковых устройств и предсказания параметров их работы.

Подобные сведения для сверхпроводниковых наноструктур на основе ультратонких пленок TiN и пленок алмаза, легированного бором, не могут быть предсказаны теоретически. Таким образом, возникает необходимость в экспериментальном исследовании особенностей электрон-фононного взаимодействия в этих объектах.

Объекты исследования – сверхпроводниковые наноструктуры на основе ультратонких пленок TiN и пленки алмаза, легированного бором и тонкопленочный NbN в виде меандра вместе с одномодовым оптическим волноводом были изготовлены с использованием следующего оборудования:

- а)Технологическое оборудование:
- 1) Установка распыления Z-400 фирмы Leybold Heraus (ФРГ).
- 2) Установка совмещения и экспонирования MA-56 фирмы Karl Suss (ФРГ). Обеспечивает возможность формирования структур микронных и субмикронных размеров.
- 3) Установка плазмохимического травления Corial 200R фирмы Corial.
- 4) Установка электронно-лучевого испарения ВАК 501 фирмы Evatec.
- 5) Установка очистки и деионизации воды Milli RO-Milli Q. Производство фирмы Millipore (США).
- 6) Лабораторная установка разделения подложек на отдельные микрокристаллы методом скрайбирования HR 100 фирмы Karl Suss (ФРГ).
- 7) Профилометр-профилограф Talystep фирмы Taylor-Hobson (Великобритания) с точностью измерения до 10 ангстрем.
- 8) Высокоточный автоматизированный гелиевый течеискатель HLT-150 фирмы Balzers (Швейцария).
- 9) Установки микросварки HB16 и микросовмещения FINEPLACER-96 Lambda
- 10) Установка для электронной литографии на основе электронного микроскопа JEOL-840 с системой PROXY. Используется для формирования чувствительных элементов смесителей и детекторов.
- 11) Многофункциональная установка для распыления различных материалов Leybold Heraus-560 (ФРГ).

- 12) Вакуумный универсальный пост ВУП-5М с ионным источником. Используется при нанесении различных слоев и при ионном травлении материалов.
- 13) Печь СДО-125/4. Используется для технологических отжигов.
- 14) Фотолитографическая линейка, включающая центрифугу, а также вытяжные и сушильные шкафы. Используется для нанесения и обработки слоев фоторезиста.
- 15) Установка плазмохимического травления Плазма-600. Используется для плазмохимического травления и очистки пластин.
- б)Исследование характеристик созданных структур проводилось с использованием следующего измерительного оборудования:
- 1) Растровый электронный микроскоп РЭМ-100У. Используется при анализе пленок.
- 2) Измеритель удельного сопротивления ИУС-3. Используется для измерения поверхностного сопротивления наносимых слоев.
- 3) Микроскопы оптические аналитические Биолам-М. Используются для анализа и измерения линейных размеров созданных образцов.
- 4) Микроскоп интерференционный МИИ-4. Используется для измерения толщины наносимых слоев.
- 5) Анализаторы спектра: Rohde Schwartz R&SFSH6, Hewlett-Packard 8555A (0.01 МГц-18 ГГц), СК 4-59 (0.01-110 МГц), С4-60 (110 МГц-39.6 ГГц).
- 6) Лампы обратной волны диапазона 120-145 ГГц.
- 7) Осциллограф Tektronix DPO70404
- 8) МультиметрыSolartron7081;B7-34,HewlettPackard/Agilent 34401A. Используются для исследования характеристик разрабатываемых устройств на постоянном токе.
- 9) Источник измеритель Keithley 2400. Используются для исследования характеристик разрабатываемых устройств на постоянном токе (напряжении).
- 10) Температурный контроллер Lakeshore 331. Используется для терморегулирования при низкотемпературных исследованиях.
- 11) СВЧ усилители с полосой до 18ГГц, в том числе оригинальные с охлаждением до криогенных температур.
- 12) Синхронные вольтметры PARC 124A (2 Гц-210 кГц), PARC 5202 (0.1-50 МГц), Unipan 233. Используются для измерения уровня мощности сигналов образцов.
- 13) Адаптер смещения BT-0018 Marki Microwave

Глава 1. Кинетические процессы в тонких пленках сверхпроводников

1.1. Процессы энергетической релаксации в тонких сверхпроводниковых пленках

В сверхпроводящем состоянии процесс энергетической релаксации квазичастиц начинается с перераспределения квазичастиц по энергии, а затем происходит рекомбинация квазичастиц в куперовские пары. При понижении температуры уменьшается концентрация квазичастиц, что в свою очередь приводит к экспоненциальному увеличению времени рекомбинации [1].Характерный временной масштаб процесса временем рекомбинации электрон-фононного определяется взаимодействия в нормальном состоянии при $T = T_c$.

Влияние беспорядка на процесс электрон-фононного взаимодействия объектом многочисленных исследований, является теоретические предсказания достаточно различны. В частности, разные теории предсказывают разные значения показателя степени р в температурной зависимости времени электрон-фононного взаимодействия ($\tau_{e-ph} \sim T^{-p}$, где p может принимать значения от 2 до 4) [2–4], которые зависят от свойств беспорядка и поляризации фононов. Кроме τογο, теоретические исследования электрон-фононного взаимодействия в разупорядоченных металлах построены на том предположении, ЧТО спектр фононов является дебаевским. действительности в тонких пленках фононный спектр неизвестен и может быть сильно искажен по сравнению с объемным материалом изза акустического взаимодействия материалов пленки и подложки.

Энергетическая релаксация в сверхпроводниках определяется процессами рассеяния квазичастиц на фононах и рекомбинации квазичастиц в куперовские пары с испусканием фононов. При температурах, близких к T_c , и для квазичастиц с энергиями $\varepsilon \sim k_B T \cdot \cdot \Delta$ время рассеяния τ_S и время рекомбинации τ_R имеют тот же порядок, что и время энергетической релаксации для электронов в нормальном металле.

В чистом случае при низких температурах ($k_BT << \Delta$) скорость рассеяния квазичастиц на фононах τ^{-1}_S и скорость рекомбинации квазичастиц с испусканием фононов τ^{-1}_R для квазичастиц с энергиями $\varepsilon = \Delta$ определяются выражениями (1.1) и (1.2) [5, 7]:

$${}_{S}^{-1}(,T) = \frac{1}{7(3)} \left(\frac{7}{2}\right) \left(\frac{7}{2}\right) \left(\frac{k_{B}T_{c}}{2}\right)^{1/2} \left(\frac{T}{T_{c}}\right)^{\frac{7}{2}} \quad {}_{e-ph}^{-1}(T_{c}) \qquad (1.1)$$

$${}_{R}^{-1}(,T) = \frac{{}_{1/2}^{1/2}}{7(3)} \left(\frac{2}{k_{B}T_{c}}\right)^{5/2} \left(\frac{T}{T_{c}}\right)^{\frac{7}{2}} exp(-\frac{1}{k_{B}T}) \quad {}_{e-ph}^{-1}(T_{c}) \quad (1.2)$$

При понижении температуры скорость рассеяния квазичастиц на фононах $\tau^{-1}s(\Delta, T)$ падает, поскольку уменьшается количество доступных тепловых фононов. При рекомбинации квазичастиц нужно учесть два аспекта. Во-первых, квазичастицы посредством взаимодействия с фононами должны испускать энергию, превышающую значения сверхпроводящей щели 2Δ . Во-вторых, при температурах ниже критической число квазичастиц становится экспоненциально малым.

Все это приводит к экспоненциально замедленной рекомбинации квазичастиц при низких температурах, описываемой выражением (1.2). Экспоненциальная зависимость $\tau_R(T)$ подтверждается экспериментально в сверхпроводниковых пленках Al и Та в диапазоне температур $0.175T_c < T < T_c$ [8], однако при низких температурах ($T < 0.175T_c$) наблюдается выход на насыщение кривой $\tau_R(T)$ как для пленок Al, так и для пленок Ta [8]. Природа физических процессов, приводящих к наблюдаемому насыщению, на данный момент не ясна.

Стоит также подчеркнуть, что процессы рассеяния квазичастиц на фононах и рекомбинации квазичастиц в куперовские пары теоретически разработаны и понятны только для чистого случая $(q_T l > 1)$. В случае неупорядоченных сверхпроводников, для которых нужно учитывать роль беспорядка $(q_T l < 1)$, представление о данных процессах крайне ограничено.

В сверхпроводниках также существуют процессы релаксации, обусловленные явлениями неравновесной сверхпроводимости [9]. Во всем температурном диапазоне, за исключением узкой области вблизи T_c , сверхпроводниковый параметр порядка Δ и функция распределения квазичастиц f_k мгновенно контролируют (отслеживают) друг друга формула (1.3):

$$\frac{2}{V} = \sum_{k} \frac{1 - 2f_k}{(\Delta^2 + \xi_k^2)^{1/2}},$$
(1.3)

где ξ_k — энергия электрона в состоянии k относительно уровня Ферми в нормальном состоянии. Однако в узком интервале температур около T_c $(0.97T_c < T < T_c)$ релаксация параметра порядка значению, соответствующему мгновенному значению функции распределения, оказывается медленнее, чем процесс энергетической релаксации [10]. Неравновесное состояние, возникающее в сверхпроводнике, можно разделить на два типа: симметричное и несимметричное. симметричного отклонения функции распределения одинаковое распределение квазичастиц по обеим ветвям спектра элементарных возбуждений в соответствии с рис. 1.1.

Неравновесное состояние, возникающее в сверхпроводнике, можно два типа: симметричное и несимметричное. функции симметричного отклонения распределения характерно одинаковое распределение квазичастиц по обеим ветвям спектра элементарных возбуждений В соответствии с рис. 1.1. Данное неравновесное состояние, связанное с изменениями энергетической щели Δ , возникает в результате действия нейтральных источников возмущений, таких как фотоны и фононы. Для удобства описания неравновесного состояния вводится понятие эффективной температуры изменение которой сопоставляется отклонению функции распределения от равновесия $\delta f_k = f_k - f_0(E_k/k_BT)$. Для $\Delta << k_BT_c$, изменение эффективной температуры $\delta T^* = T^* - T$ связано с малым изменением сверхпроводникового параметра порядка по формуле (1.4):

$$\frac{\delta T^*}{T} = \int_{-\infty}^{\infty} \frac{\delta f_k}{(\Delta^2 + \xi_k^2)^{1/2}} d\xi_k.$$
(1.4)

При несимметричном неравновесном состоянии отклонение функции распределения связывается с неравновесной плотностью заряда квазичастиц Q^* , которую можно вычислить по формуле (1.5). Неравновесная плотность заряда квазичастиц возникает в результате действия заряженных источников возмущения (таких, как инжекция электронов, преобразование нормального тока в сверхток на границе нормальный металл — сверхпроводник):

Научное издание

Титова Надежда Андреевна, Кардакова Анна Игоревна, Щербатенко Михаил Леонидович, и др.

Детекторы на кинетической индуктивности для видимого, ближнего и дальнего инфракрасного диапазонов

Монография

Издается в авторской редакции

Управление издательской деятельности и инновационного проектирования МПГУ 119571, Москва, Вернадского пр-т, д. 88, оф. 446

Тел.: (499)730-38-61 E-mail: izdat@mpgu.edu

Подписано в печать 20.11.2017. Формат 60x90/16 Бум. офсетная. Печать цифровая. Объем 5,5 п. л. Тираж 500 экз. Заказ № 741.

