1 Н Водород	2 Не Гелий	3 Li Литий	4 Ве Бериллий	5 B 5op	6 С Углерод	7 N Азот	8 О Кислород	9 Г Фтор	Ne Heon
11	12	13	14	15	16	17	18	19	20
Na	Mg	АІ	Si	Р	S	С	Аг	К	Са
Натрий	Магний	Алюминий	Кремний	Фосфор	Cepa	Хлор	Аргон	Калий	Кальций
21 SC Снандий	22 Ті Титан	23 V Ванадий	Cr Xpom	25 Мп Марганец	Fe железо	27 СО Кобальт	28 Ni Никель	29 Си медь	Zn Цинк
31	32	33	34	35	36	37	38	39	40
Ga	Ge	As	Se	Вг	Кг	Rb	S Г	Y	Zr
Галлий	Германий	Мышьяк	Селен	_{Бром}	Криптон	Рубидий	Стронций	Иттрий	Цирконий

БОЛЬШАЯ ЭНЦИКЛОПЕДИЯ **ХИМИЧЕСКИХ ЭЛЕМЕНТОВ**

ПЕРЕОДИЧЕСКАЯ ТАБЛИЦА МЕНДЕЛЕЕВА

41 Nb Ниобий	42 Мо Молибден	43 Тс Технеций	44 Ru Рутений	45 Rh Родий	46 Pd Палладий	Ag Cepe6po	48 Сd Кадмий	49 In Индий	50 Sn Олово
51 Sb Сурьма	52 Те Теллур	53 Иод	54 Хе Ксенон	55 СS Цезий	56 Ва Барий	57 La Лантан	58 Се церий	59 Рг Празеодим	60 Nd Неодим
61 Рт Прометий	62 Sm Самарий	63 Eu Европий	64 Gd Гадолиний	65 Тb Тербий	66 Dy Диспрозий	67 Но Гольмий	68 ЕГ Эрбий	69 Тт Тулий	70 Yb Иттербий
Lu	Hf	Ta	илья леенсон				74 W	Re	76 Os

Леенсон Илья Абрамович

БОЛЬШАЯ ЭНЦИКЛОПЕДИЯ **ХИМИЧЕСКИХ ЭЛЕМЕНТОВ**

ПЕРИОДИЧЕСКАЯ ТАБЛИЦА МЕНДЕЛЕЕВА

Содержание

2

1 Н Водород 1,008 3 Ці Литий 6,94	2 4 Be Бериллий 9,012182(3)		Введение 4 Водород 18 Металлы 22 Щелочные металлы 24 Щёлочноземельные элементы 32 Группа скандия 40 Лантан и лантаноиды 44 Актиний и актиноиды 54 Группа титана 60 Группа ванадия 64 Группа хрома 68 Группа марганца 72 Триада железо — кобальт — никель 78							
Na Натрий 22,98976928(2)	Магний 24,3050(6)	3		ений — роді 5						
К Калий 39,0983(1)	Са Кальций 40,078(4)	SC Скандий 44,955912(6)	Титан 47,867(1)	V Ванадий 50,9415(1)	Cr Xpom 51,9961(6)	Мп Марганец 54,938045(5)	Fe Железо 55,845(2)	Со Кобальт 58,933195(5)		
Rb Рубидий 85,4678(3)	Sr Стронций 87,62(1)	У Иттрий 88,90585(2)	Zr Цирконий 91,224(2)	41 Nb Ниобий 92,90638(2)	Молибден 95,96(2)	Тс Технеций [98]	Ru Рутений 101,07(2)	Rh Родий 102,90550(2)		
CS Цезий 132,9054519(2)	Ва Барий 137,327(7)		Hf Гафний 178,49(2)	73 Тантал 180,94788(2)	74 Вольфрам 183,84(1)	Re Рений 186,207(1)	76 ОS Осмий 190,23(3)	77 Иридий 192,217(3)		
87 ГГ Франций [223]	88 Ra Радий [226]		Rf Peзерфордий [265]	105 С С С С С С С С С С	Sg Сиборгий [272]	В Борий [274]	108 Н Хассий [276]	109 Мейтнерий [278]		
— р-э.	пементы лементы лементы	3	La Лантан 138,90547(7)	58 Се Церий 140,116(1)	БРЕ Празеодим 140,90765(2)	Nd Hеодим 144,242(3)	61 Рт Прометий [145]	Sm Самарий 150,36(2)		
	пементы		Актиний [227]	90 ТЬ Торий 232,03806(2)	91 Pa Протактиний 231,03588(2)	92 Vpah 238,02891(3)	93 Np Нептуний [237]	Pu Плутоний [244]		

Триада осмий — иридий — платина									
Трансурановые элементы									
			5 B 5op 10,81	С Углерод 12,011	7 Л Азот 14,007	8 Сислород 15,999	9 Г Фтор 18,9984032(5)	10 Ne Неон 20,1797(6)	
10	11	12	Алюминий 26,9815386(8)	Si Кремний 28,085	Р Фосфор 30,973762(2)	S Cepa 32,06	17 Хлор 35,45	Apron 39,948(1)	
Ni Никель 58,6934(4)	Си медь 63,546(3)	Zn <u>Цинк</u> 65,38(2)	Ga Галлий 69,723(1)	Ge Германий 72,63(1)	AS Мышьяк 74,92160(2)	Se Селен 78,96(3)	Br 5pom 79,904(1)	Кр Криптон 83,798(2)	
Pd Палладий 106,42(1)	Ag Cepe6po 107,8682(2)	Cd Кадмий 112,411(8)	In Индий 114,818(3)	Sn Олово 118,710(7)	Sb Сурьма 121,760(1)	Теллур 127,60(3)	У ООД 126,90447(3)	Хе Ксенон 131,293(6)	
Pt Платина 195,084(9)	79 Au 3олото 196,966569(4)	Нg Ртуть 200,59(2)	81 Таллий 204,38	Pb Свинец 207,2(1)	Висмут 208,98040(1)	Ро Полоний [209]	85 Actat [210]	86 Rn Радон [222]	
110 В В В В В В В В В В	Rg Рентгений [281]	112 Сп Коперниций [285]	113 Uut Унунтрий [286]	Т114 Флеровий [289]	115 Uup Унунпентий [289]	LV Ливерморий [293]	117 Uus Унунсептий [294]	118 С О О О Унуноктий [294]	
Eu Европий 151,964(1)	Gd Гадолиний 157,25(3)	ТБ Тербий 158,92535(2)	Dy Диспрозий 162,500(1)	Но Гольмий 164,93032(2)	ЕГ Эрбий 167,259(3)	Тт Тулий 168,93421(2)	Yb Иттербий 173,054(5)	T1 Lu Лютеций 174,9668(1)	
95 Ат Америций [243]	96 Ст Кюрий [247]	Bk Берклий [247]	98 Cf Калифорний [251]	99 Es Эйнштейний [252]	Fm Фермий [257]	Na Менделевий [258]	No Hобелий [261]	103 С Г Лоуренсий [264]	

Введение

Что такое химический элемент

На страницах этой книги вы узнаете обо всех открытых к настоящему времени химических элементах. Из этих элементов образовано всё, что нас окружает. И, конечно, сам человек.

Другого ничего в природе нет ни здесь, ни там, в космических глубинах: всё — от песчинок малых до планет — из элементов состоит единых...

Кипит железо, серебро, сурьма и темно-бурые растворы брома, и кажется вселенная сама одной лабораторией огромной...

Будь то вода, что поле оросила, будь то железо, медь или гранит — всё страшную космическую силу, закованную в атомы, хранит.

Эти строчки из стихотворения Степана Щипачёва «Читая Менделеева» как нельзя лучше подходят к этой книге в качестве эпиграфа. Они написаны в 1948 г., но поэт как будто предвидел, что наука подтвердит его догадку: химические элементы созданы в «огромной лаборатории вселенной» под действием «страшной космической силы». А что говорит на это счёт современная наука? Как появились химические элементы и что это за «страшная сила», которая их создала?

Но сначала о том, что же такое химический элемент. Это понятие сформировалось в XVIII веке, когда химия делала свои первые шаги. Но почти за две с половиной тысячи лет до этого пытливый ум древнегреческих философов уже сформулировал атомистическую гипотезу. Впервые понятие атома появилось у философа Левкиппа (ок. 500—440 до н.э.), а развил эту теорию его ученик Демокрит

(ок. 460—371 до н.э.). Они считали, что в мире всё состоит из неких мельчайших, не видимых глазом частиц, которые могут соединяться и разъединяться, порождая все видимые вещи.

↑ И кристаллы медного купороса, и сосновый лес – всё состоит из химических элементов.

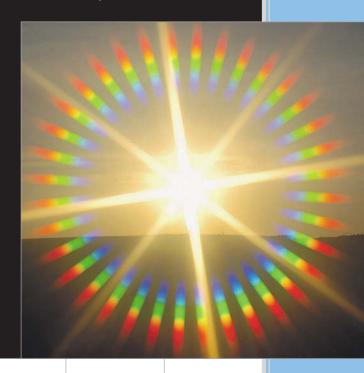
↑ ТУМАННОСТЬ В СОЗВЕЗ-ДИИ КИЛЯ. ФОТОГРАФИЯ КОСМИЧЕСКОГО ТЕЛЕСКОПА «ХАББЛ» Суть атомистической теории очень образно описал древнеримский поэт и философ Тит Лукреций Кар (ок. 99—55 до н. э.). Вот небольшие выдержки из его поэмы «О природе вещей». Следует учесть, что вместо «атомы» или «элементы» Лукреций использует понятия «начала», «первоначала», «семена» и т.п.

...Существуют такие тела, что и плотны, и вечны: Это — вещей семена и начала в учении нашем, То, из чего получился весь мир, существующий ныне... Первоначалам должно быть присуще бессмертное тело, Чтобы все вещи могли при кончине на них разлагаться. И не иссяк бы запас вещества для вещей возрожденья. Первоначала вещей, таким образом, просты и плотны. Иначе ведь не могли бы они, сохраняясь веками, От бесконечных времён и досель восстанавливать вещи....

Лукреций пытается подтвердить атомистическую теорию житейским опытом:


...Начала вещей недоступны для глаза... Существуют тела, которых мы видеть не можем Запахи мы обоняем различного рода, Хоть и не видим совсем, как в ноздри они проникают. И, наконец, на морском берегу, разбивающем волны, Платье сырее всегда, а на солнце вися, оно сохнет; Видеть, однако, нельзя, как влага на нём оседает, Да и не видно того, как она исчезает от зноя. Значит, дробится вода на такие мельчайшие части, Что недоступны они совершенно для нашего глаза.

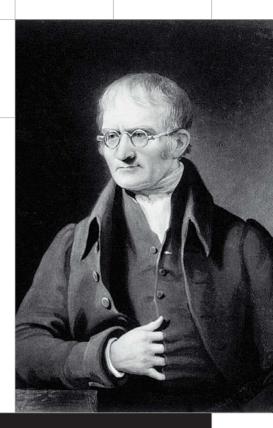
Лукреций объясняет, почему из небольшого числа разных атомов может образоваться бесконечное разнообразие материальных тел:


Часто имеет ещё большое значенье, с какими
И в положеньи каком войдут в сочетание те же
Первоначала и как они двигаться будут взаимно.
Те же начала собой образуют ведь небо и землю,
Солнце, потоки, моря, деревья, плоды и животных...
Даже и в наших стихах постоянно, как можешь заметить,
Множество слов состоит из множества букв однородных,
Но и стихи, и слова, как ты непременно признаешь,
Разнятся между собой и по смыслу и также по звуку.
Видишь, как буквы сильны лишь одним измененьем порядка...

Действительно, используя всего два-три десятка букв, можно создать всю мировую художественную и научную литературу; из 12 нот хроматической гаммы — бесконечное разнообразие музыкальных произведений; из трёх основных цветов — миллионы цветовых оттенков. Точно так же из немногих первоначал-элементов создаётся весь окружающий нас мир.

↓ Тит Лукреций Кар — Римский поэт и философ-материалист, I в. до н.э.

↓ БЕЛЫЙ СОЛНЕЧНЫЙ СВЕТ, ПРЕЛОМЛЯЯСЬ, РАЗЛАГАЕТСЯ НА МНОЖЕСТВО ЦВЕТОВ.


Введение

Атомистическая теория античных философов была забыта почти на два тысячелетия. Ее возродил, уже на строгой научной основе, английский химик Джон Дальтон (1766—1844). Каждому известному элементу у Дальтона соответствовал свой сорт атомов — со своей массой и своими свойствами. Эксперименты Дальтона впервые позволили, пусть и неточно, определить относительные атомные массы ряда химических элементов. То есть во сколько раз, например, масса атома кислорода больше массы атома водорода. Различные элементы в своих статьях Дальтон изображал как старинными алхимическими символами, так и изобретенными им значками. Дальтон известен также тем, что описал дефект зрения, которым страдал, — цветовую слепоту, которая названа дальтонизмом.

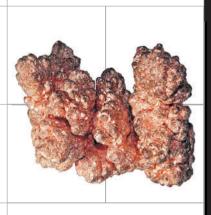
→ Джон Дальтон — английский химик.

Таблица химических элементов Дальтона.

Окончательно понятие химического элемента сформировалось во второй половине XVIII века, в частности, в работах великого французского химика Антуана Лорана Лавуазье (1743—1794). Он писал: «Все вещества, которые мы ещё не смогли никаким способом разложить, являются для нас элементами». В настоящее время химическим элементом называется совокупность атомов одного сорта. Химический элемент нельзя увидеть, это некая абстракция. Зато увидеть, а часто и потрогать, можно простое вещество. Например, из множества атомов химического элемента углерода можно получить кристалл алмаза. А можно кристалл похожего на алмаз и даже более твердого лонсдейлита. Можно из атомов углерода получать и другие простые вещества: графит, множество разных фуллеренов, нанотрубки и т д. Углерод — не исключение, а правило: из атомов почти всех химических элементов можно получить разные простые вещества. Они отличаются либо числом атомов в молекуле (это более редкий случай; примером могут служить кислород и озон), либо расположением атомов относительно друг друга в кристалле (как в графите и алмазе).

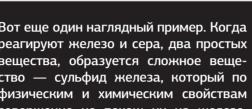
↑ Ж.-Л. Давид. Антуан Лавуазье с женой. 1788 г. Если вещество построено из атомов разных элементов, то такое вещество называется сложным. Когда-то вода считалась простым веществом. Лавуазье впервые сумел разложить воду:

→ Брилли-АНТ — ОГРА-НЕННЫЙ АЛМАЗ.



он пропустил ее пары через раскаленный ружейный ствол, и атомы железа оторвали атомы кислорода от молекул воды, превратившись в окалину. Остался газообразный водород, который Лавуазье смог собрать. При соединении водорода с кислородом снова получалась вода. Когда итальянский физик Алессандро Вольта (1745—1827) изобрел удобный источник электрического тока, с его помощью удалось разложить воду и получить сразу и водород, и кислород.

Так было доказано, что вода — сложное вещество. Газ хлор когдато химики считали сложным веществом. Но попытки разложить этот газ не удались. Пришлось признать, что хлор — простое вещество.


↑ Прозрачные кристаллы КВАРЦА.

↑ Самородок меди.

→ Медная монета.

Вот еще один наглядный пример. Когда реагируют железо и сера, два простых вещества, образуется сложное вещество — сульфид железа, который по физическим и химическим свойствам совершенно не похож ни на железо,

ни на серу (так же, как вода не похожа на водород и кислород). Мы можем сказать, что сульфид железа состоит из элемента железа и элемента серы. Но никогда химик не скажет, что сульфид железа содержит простые вещества — железо и серу. Иначе получилось бы, что это вещество представляет собой смесь, то есть часть его притягивалась бы магнитом, а другая часть имела жёлтый цвет и легко плавилась. Представить себе такое вещество затруднительно. На эту тему можно привести строки Евгения Винокурова:

И в учебник по химии взор мой тупо вперен: до сих пор я не понял задачу, где смешаны сера с азотом.

Действительно, трудно понять, как можно смешать эти два вещества. В русском языке (как, впрочем, в большинстве иностранных) для обозначения как элементов, так и простых веществ используются одни и те же термины. Например, если говорят «медная монета», «медь хорошо проводит электрический ток», очевидно, что речь идет о простом веществе, металле. Если же сказать, что медь распространена в природе меньше, чем алюминий, то здесь имеют в виду химические элементы медь и алюминий. Утверждая, что «медь занимает в таблице Менделеева место между

никелем и цинком», химик также имеет в виду вовсе не кусочки металлов в клетках таблицы, а элементы медь, никель и цинк как совокупность их атомов.

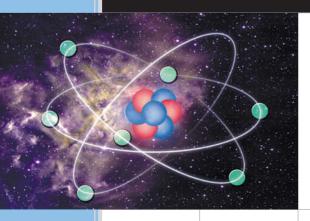
Разные термины для элемента и соответствующего простого вещества в русском языке встречаются редко. Таким примером могут служить термины «углерод» и «графит». Интересно, что в современной украинской химической номенклатуре для элементов и простых веществ используют

итальянский физик.

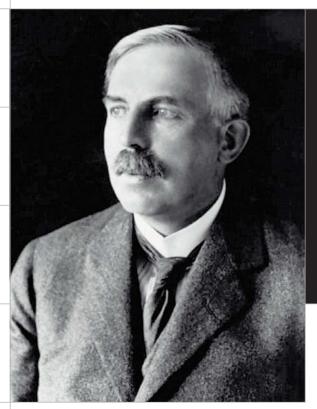
разные слова. Вот несколько примеров (приводятся символ элемента и украинские названия простого вещества и химического элемента): Н — водень, Гідроґен; О — кисень, Оксиґен; Si — кремній, Силіцій; S — сірка, Сульфур; F — фтор, Флуор; Си — мідь, Купрум; Ag — срібло, Арґентум; Au — золото, Аурум; Hg — ртуть, Меркурій; Fe — залізо, Ферум; Ві — вісмут, Бісмут. То есть в основе названия химического элемента — соответствующее латинское название, которое пишется с прописной буквы. Остается только пояснить, что удвоенные согласные в украинском языке очень редки, а буква ґ (с «хвостиком») используется для написания иностранных слов и показывает, что этот звук твердый.

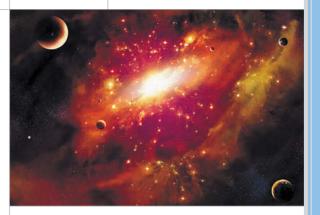
В заключение отметим, что хотя мы говорим «железный гвоздь», гвозди на самом деле делают из низкоуглеродистой стали, содержащей небольшое количество углерода. Золотые «царские» десятки содержат только 90% чистого золота, а в золотом кольце его часто всего 58,5% (проба 585), остальное — серебро и медь (чистое золото слишком мягкое). И только коллекционные золотые монеты чеканят из почти чистого (99,9%) золота. Число окружающих нас в быту сравнительно чистых про-

стых веществ невелико. Это алюминий и медь в электрических проводах; металлы вольфрам и молибден в лампах накаливания (из молибдена сделаны впаянные в стекло проволочки, поддерживающие вольфрамовую спираль), а колба лампы может быть наполнена аргоном, криптоном или ксеноном: гелий в воздушных шариках: серебро, золото, платина, палладий в высокопробных ювелирных изделиях и памятных монетах; ртуть в термометре (маленькие капельки ртути содержатся также в энергосберегающих лампах и лампах дневного света, а в горящих лампах ртуть находится в виде паров); олово на консервной банке и олово для пайки (чаще паяют третником — сплавом олова и свинца); хром и никель на хромированных и никелированных металлических изделиях; цинк в электрических батарейках и на поверхности оцинкованного ведра (на новом ведре видны красивые цинковые кристаллы); порошок серы для борьбы с вредителями растений. К этому можно с некоторой натяжкой добавить иод (всё же мы видим его не в чистом виде, а в растворе), кремний и германий в полупроводниковых приборах (а их мы вообще не видим)...



† На золотой монете изображен Георгий Победоносец.


↑ Ртуть — жидкий металл.


Как устроены атомы и откуда они взялись

Атомы состоят из очень плотного и очень маленького ядра, около которого движутся электроны: от одного в атоме водорода до 116 электронов в атоме ливермория, последнего элемента, имеющего название. Атом напоминает Солнечную систему: планеты в ней движут-

ся вокруг центрального массивного тела — Солнца, а электроны в атоме — вокруг ядра. В обоих случаях вещество занимает ничтожную часть пространства. Так, в Солнечной системе почти вся масса (99,87%) сосредоточена в самом Солнце. И в атомах почти вся масса сосредоточена в ядре (в атоме водорода — 99,95%). Но атом намного более «пустой», чем Солнечная система! Расстояние от Солнца до самой далекой планеты примерно в 6500 раз больше радиуса Солнца. Размеры же атомов примерно в 100 тысяч раз превышают размеры ядра! Если «увеличить» ядро атома до размера булавочной головки, то сам атом увеличится до размера футбольного поля! Это означает, что атомы «внутри» почти пустые. Если представить себе огромный свинцовый куб с ребром размером 100 м, то фактически вся его масса (11 млн тонн) будет сосредоточена в ядрах свинца, суммарный объём которых меньше спичечной головки! Плотность ядерного вещества в любых атомах невероятно высока. Масса электрона в 1836 раз меньше массы ядра атома водорода. Ядра атомов заряжены положительно, а электроны отрицательно, между ними действуют огромные силы притяжения.

↑ Э. Резерфорд — АНГЛИЙСКИЙ ФИЗИК.

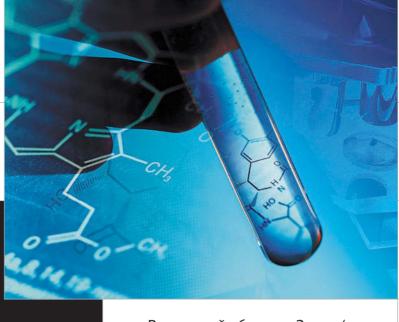
↑ Планеты в Солнечной системе двигаются по круговым орбитам вокруг Солнца подобно тому, как электроны движутся вокруг ядра в атоме.

Сравнение атома с Солнечной системой очень приблизительное. Электроны не вращаются, подобно планетам, вокруг центрального ядра по круговым или эллиптическим орби-

там, а также не вращаются вокруг своей оси. Их движение описывается законами квантовой механики, для которых в повседневной жизни невозможно найти аналогию. Например, электрон может поглотить квант света — фотон и при этом мгновенно исчезнуть в одной области пространства и появиться в другой области, более далекой от ядра. После этого электрон может также мгновенно, минуя все промежуточные области пространства, опять оказаться ближе к ядру и при этом испустить другой квант света. Эти переходы так и называются — квантовыми. Именно квантовая механика объясняет строение атомов разных элементов и их расположение в Периодической системе Д. И. Менделеева.

Ядро атома водорода — положительно заряженная элементарная частица — протон; это слово придумал английский физик Эрнест Резерфорд (1871—1937), образовав его от греч. protos — первый. В ядрах всех остальных атомов содержатся не имеющие заряда элементарные частицы — нейтроны — от одного до 176 для известных ядер. Слово «нейтрон» также придумал

Резерфорд, образовав его от *лат*. neuter — ни тот, ни другой. Нейтроны помогают положительно заряженным протонам удерживаться в ядре, несмотря на огромные силы отталкивания между очень близко расположенными зарядами.


→ ОРГАНИЧЕСКИЕ ВЕЩЕСТВА — СОЕДИНЕНИЯ УГЛЕРОДА С ДРУГИМИ ЭЛЕМЕНТАМИ — САМЫЙ ОБШИРНЫЙ КЛАСС ХИМИЧЕСКИХ СОЕДИНЕНИЙ.

Каждый химический элемент имеет определенное число протонов в ядре: от одного для самого легкого до 118 для самого тяжелого из известных на середину 2013 г. В электрически нейтральном атоме число электро-

нов равно числу протонов; именно электроны определяют основные химические свойства элемента. Число протонов в ядре элемента определяет заряд ядра Z и порядковый номер элемента в Периодической таблице. Этот фундаментальный закон открыл в 1913 г. талантливый английский физик Генри Мозли (1887—1915), погибший в возрасте 27 лет в ходе бездарной операции английских войск в Галлиполи.

Число нейтронов в ядре данного элемента может быть разным. Протоны и нейтроны имеют общее название — нуклоны, а тип атомов с данным числом протонов и нейтронов в ядре называется нуклидом (от лат. nucleus — ядро и греч. eidos вид, сорт). Нуклиды данного элемента с разным числом нейтронов в ядре называются изотопами, от греч. isos — равный, одинаковый, подобный и topos — место. Суммарное число протонов и нейтронов в ядре данного нуклида называется массовым числом; очевидно, что оно может быть только целым. Число протонов иногда указывают внизу перед символом элемента. Например, "Li, но это делают редко, потому что сам символ лития подразумевает, что в ядре его атома три протона (Z = 3, u B)таблице Менделеева литий находится под третьим номером). А вот массовое число очень важно для характеристики разных изотопов данного элемента. Его указывают вверху перед символом элемента; например, ⁷Li означает, что в ядре этого изотопа лития помимо трех обязательных протонов содержится также четыре нейтрона. Иногда массовое число указывают после названия элемента, отделяя его дефисом: литий-7, уран-238.

Химические свойства разных изотопов данного элемента могут быть почти одинаковыми (например, ⁶³Cu и ⁶⁵Cu), но физические свойства иногда отличаются очень сильно. Например, нуклиды ⁶³Cu и ⁶⁵Cu стабильны, тогда как нуклид ⁶⁴Cu радиоактивен и очень быстро распадается, поэтому этот нуклид в природе не встречается.

Во внешней оболочке Земли (земной коре) встречается примерно 90 химических элементов. Но распределены они крайне неравномерно. Еще в 1914 г. итальянский химик Джузеппе Оддо (1865—1954), а в 1917 г. американский химик Уильям Харкинс (1873—1951) на основе многих анализов показали, что элементы с четными порядковыми номерами значительно более распространены в природе — их почти 90%. Четные номера имеют самые распространенные в земной коре элементы — кислород (Z = 8) и кремний (Z = 14). Они дают почти 75% от массы земной коры. Других элементов мало (ванадий, медь), очень мало (рений, висмут) или даже практически нет (актиний, америций).

В 1889 г. американский геохимик Франк Уиглсуорт Кларк (1847—1931) впервые попытался оценить содержание известных тогда химических элементов в земной коре. С этой целью он собрал все имеющиеся тогда сведения по составу горных пород и вывел их средний состав. Впоследствии числа, выражающие среднее содер-

↓ Вода — соединение

водорода

жание того или иного элемента в земной коре, по предложению геохимика и минералога академика Александра Евгеньевича Ферсмана (1883—1945) стали называть кларками. Эти числа рассчитывают по результатам многочисленных анализов различных минералов и горных пород. Поэтому неудивительно, что кларки в разных справочниках могут различаться: они много раз уточнялись, и работа эта до сих пор не закончена. Так, в начале XX века кларк германия оценивался как 10⁻¹⁰ %, но впоследствии было показано, что этого элемента в действительности в миллион раз больше! С серой же было наоборот: к началу 1930-х гг. считали, что ее 0,1%, а современное значение почти вдвое меньше.

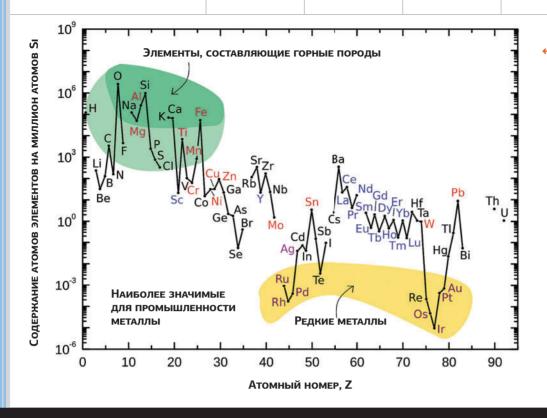
↓ Ф. У. Кларк американский геохимик.

Один из создателей геохимии Владимир Иванович Вернадский (1863—1945), выступая в 1909 г. на XII съезде русских естествоиспытателей и врачей, сказал: «В каждой капле и пылинке вещества на земной поверхности по мере увеличения тонкости наших исследований мы открываем все новые и новые элементы...

В песчинке или капле, как в микрокосмосе, отражается общий состав космоса. В ней могут быть найдены все те же элементы, какие наблюдаются на земном шаре, в небесных пространствах. Вопрос связан лишь с улучшением и уточнением методов исследования».

Значит, все элементы есть везде. И только недостаточная чувствительность современных методов анализа не позволяет определить их содержание. Кларк кислорода самый высокий — 46,1; кремния — 28,2, водорода — 0,14. А кларк редчайшего элемента рения составляет миллиардные доли процента. То есть в 1 г вещества в среднем содержится примерно 10-9 г (1 нанограмм) рения. Но даже в этом ничтожном количестве содержатся триллионы атомов рения!

Кларк радия почти в тысячу раз меньше, чем рения, но все равно в 1 г какого-либо образца земной коры в среднем содержатся миллиарды атомов этого редчайшего элемента. А в теле человека? Известно, например, что поступление радия в организм человека с воздухом составляет примерно 1 фг (фемтограмм, квадриллионная часть грамма) в сутки. Нетрудно подсчитать, что каждую секунду в наши легкие попадает с воздухом около 30 атомов радия! Всего же в теле человека в среднем содержится 30 пг (пикограммов, триллионных до-


лей грамма) радия, или 80 миллиардов атомов!

← В.И. ВЕРНАДСКИЙ —

РУССКИЙ ГЕОХИМИК.

Введение

← На рисунке показано, сколько атомов РАЗНЫХ ЭЛЕМЕНТОВ приходится В ЗЕМНОЙ КОРЕ НА миллион атомов кремния. В левой ВЕРХНЕЙ ЧАСТИ находятся элементы, составляющие основу горных пород, в правой нижней части РАСПОЛОЖЕНЫ САМЫЕ РЕДКИЕ металлы. Красным цветом выделены символы наиболее важных для **ПРОМЫШЛЕННОСТИ** металлов, ФИОЛЕТОВЫМ -**ДРАГОЦЕННЫЕ МЕТАЛЛЫ, СИНИМ** -РЕДКОЗЕМЕЛЬНЫЕ ЭЛЕМЕНТЫ.

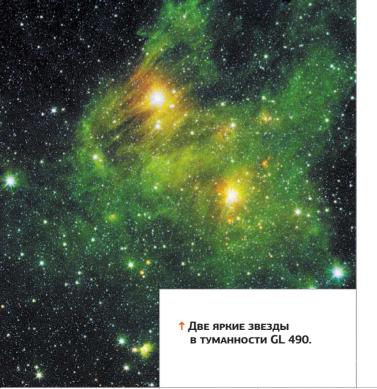
- ↓ Состав внутренних слоев Земли неизвестен. Тем не менее делались попытки оценить кларки всего земного шара в целом. И тогда на первое место выходит железо! Потому что его много в ядре Земли.
- ▶ РАСПРЕДЕЛЕНИЕ ХИМИЧЕСКИХ ЭЛЕМЕНТОВ В ОРГАНИЗМЕ ЧЕЛОВЕКА (В ПРОЦЕНТАХ ПО МАССЕ) ИНОЕ (ДАНЫ ПРИБЛИЗИТЕЛЬНЫЕ ЧИСЛА, ТАК КАК ВСЕ ЛЮДИ РАЗНЫЕ; ОСОБЕННО ЭТО КАСАЕТСЯ БОЛЕЕ РЕДКИХ ЭЛЕМЕНТОВ).
- ↓ Совершенно другая картина получается для распространенности элементов в космосе, точнее, в нашей Галактике (также в процентах по массе):

Почему же одних элементов в земной коре много, а других мало? И почему в нашей Галактике (которая вряд ли сильно отличается от соседних) распределение элементов совершенно другое, чем в земной коре? Может возникнуть и такой

вопрос: как и когда появились все химические элементы? Ответы на эти вопросы наука смогла дать только во второй половине XX века.

Когда подсчитали распространенность в земной коре стабильных изотопов всех элементов (их известно около 300) в зависимости от состава их ядер, то получилась очень интересная картина. Эти данные приведены в таблице (из нее исключен кислород, на который приходится половина массы).

число протонов в ядре	четное	нечетное	четное	нечетное
число нейтронов в ядре	четное	четное	нечетное	нечетное
общее содержание, %	21	26	1	0,03


Распространенность элемента зависит прежде всего от четности числа нейтронов в его ядре. Стабильных нечетно-нечетных ядер известно только четыре — это ядра дейтерия (1 протон, 1 нейтрон; природный водород содержит 0,02% дейтерия), лития-6 (3 протона, 3 нейтрона; содержание в природном литии 7,4%), азота-14 (7 протонов, 7 нейтронов; азот-14 составляет 99,6% всего азота), бора-10 (5 протонов, 5 нейтронов; природный бор содержит 19,7% бора-10).

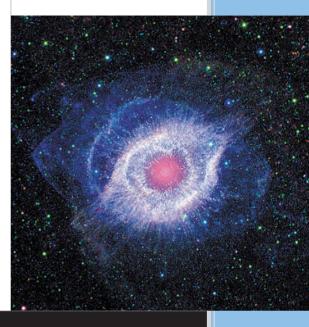
Есть и еще одно очень интересное проявление «четно-нечетного эффекта». Многие элементы с нечетным порядковым номером, т. е. с нечетным числом протонов в ядре, — это элементыодиночки: они состоят из одного лишь стабильного нуклида (все остальные радиоактивны). Таких элементов 19, среди них фтор-19, натрий-23, алюминий-27, фосфор-31, марганец-55, кобальт-59, иод-127, цезий-133, золото-197 и др. В то же время существует всего-навсего один четный элемент-одиночка — это бериллий (Z = 4) с единственным стабильным нуклидом ⁹Ве. Обычно же у элементов с четным порядковым номером Z есть несколько стабильных изотопов; рекорд принадлежит олову (Z = 50): у него десять стабильных и еще больше радиоактивных изотопов.

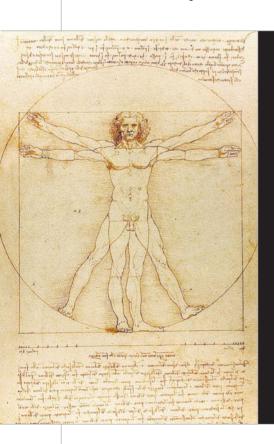
Итак, самые стабильные ядра содержат четное число протонов и нейтронов. А среди этих ядер наиболее стабильные содержат 2, 8, 20, 28, 50, 82 или 126 протонов или нейтронов; такие числа назвали магическими.

Ядра ⁴He, ¹⁶O, ⁴⁰Ca и ряд других являются дважды магическими (магическое число и протонов, и нейтронов), поэтому их во Вселенной относительно много.

Почему же одних элементов много, а других мало? И всегда ли так было? По современным представлениям Вселенная возникла в результате Большого взрыва. После взрыва сначала образовались протоны (ядра атомов водорода) и нейтроны. Спустя несколько минут после взрыва, когда температура снизилась до миллиарда градусов, начался процесс нуклеосинтеза — соединение протонов и нейтронов с образованием более тяжелых ядер. На первом этапе образовались в основном ядра гелия-4. В результате первичная Вселенная состояла из ядер водорода (примерно 75%) и гелия-4 с очень малой примесью ядер тяжелого водорода дейтерия (D, один протон и один нейтрон), гелия-3 и лития-7. Вселенная продолжала расширяться, остывать и становилась все более разреженной. Когда температура стала ниже 10 000 градусов, электроны получили возможность соединяться с ядрами, образуя устойчивые атомы водорода и гелия.

↓ Поверхность Солнца с протуберанцем. Бесконечному расширению Вселенной противодействовали силы всемирного тяготения (гравитации). Гравитационное сжатие материи в разных частях разреженной Вселенной сопровождалось повторным сильным разогревом: энергия тяготения


переходила в тепловую энергию. Наступила стадия массового образования первых звезд, которая продолжалась около 100 миллионов лет. Если при гравитационном сжатии температура достигала 10 миллионов градусов, начинался процесс термоядерного синтеза: ядра водорода (Z = 1) сливались и превращались в гелий (Z = 2). «Горение» водорода с образованием гелия — основная реакция, дающая энергию нашему Солнцу. При более высоких температурах идут реакции образования ядер лития (Z = 3) и некоторых более тяжёлых элементов. Все эти реакции сопровождаются выделением огромного количества энергии — в виде излучения звезды. (Реакции слияния ядер идут и при взрыве водородной бомбы.) Пока в звезде идут реакции синтеза, излучение уравновешивает гравитационное сжатие звезды.


Когда заметная часть водорода в звезде «выгорает», синтез гелия замедляется, связанное с ним излучение уже не может уравновесить гравитацию огромной массы. Силы гравитации вновь сжимают и разогревают звезду, и при температуре 150 миллионов градусов в ее самой горячей центральной части происходит слияние ядер гелия с образованием ядер углерода (Z = 6). А во внешних более холодных слоях звезды продолжается синтез гелия из водорода. После полного исчерпания запасов гелия наступает следующий этап сжатия звезды силами гравитации. И если масса звезды в несколько раз больше массы Солнца, она может разогреться до миллиарда градусов и выше. При таких температурах происходит синтез более тяжелых ядер. Выделяющаяся в этих процессах энергия в виде излучения сильно «раздувает» внешние слои старых звезд. Звездный ветер, «дующий» с их поверхности, выносит в космическое пространство синтезированные этими звездами химические элементы. По образному выражению, звезды — это ядерные костры, зола которых — химические элементы. Если же масса звезды не очень велика (как у нашего Солнца), температура на ней недостаточно высокая, чтобы углерод и кислород вступили в дальнейшие реакции ядерного синтеза; такая звезда может стабильно излучать очень долго — миллиарды лет.

↑ ВСЕ ХИМИЧЕ-СКИЕ ЭЛЕМЕН-ТЫ ОБРАЗО-ВАЛИСЬ В ЗВЁЗДАХ. Синтез ядер в звездах может дать только элементы с атомными номерами не более Z = 26, 27, 28 (железо, кобальт, никель). Так что атомы железа в нашей крови когда-то были синтезированы в звездах! Как же появились в природе все остальные химические элементы? И как они попали из звезд на Землю, в том числе в тело человека?

Если масса звезды в десять раз больше, чем у Солнца, температура в ее центральной части становится такой высокой, что там синтезируются ядра вплоть до железа (Z = 26) и никеля (Z = 28). Из всех химических элементов эти ядра самые стабильные. Это значит, что реакции слияния ядер и синтеза более легких, чем железо, элементов идут с выделением энергии, тогда как синтез более тяжелых элементов требует затрат энергии. Поэтому в звездах, достигших «железной» стадии развития, происходят драматические события: вместо выделения энергии идет ее поглощение, что сопровождается быстрым понижением температуры и светимости. А сама звезда сжимается до очень маленького объема; этот процесс называется гравитационным коллапсом (от лат. collapses — ослабевший, одряхлевший, разрушенный). В этом процессе образуется большое число нейтронов, которые благодаря отсутствию заряда легко проникают в ядра всех имеющихся элементов, в том числе железа и его соседей. В ядре избыточный нейтрон превращается в протон (их массы близки). Но протон заряжен, поэтому в результате такого процесса из элемента с номером Z образуется элемент с номером Z + 1. Так появляются все более тяжелые химические элементы, следующие за железом.

↓ Туманность NGC 7293.

↑ Рисунок Леонардо да Винчи «Витрувианский человек» (XV в.) показывает, что пропорции человеческого тела тоже математически определены.

Коллапс звезды заканчивается грандиозным взрывом, при котором в космическое пространство выбрасывается до 90% ее массы. Так появляется сверхновая звезда (обычно говорят просто «сверхновая»), яркость которой может быть больше суммарной яркости миллиардов звезд. Невооруженным глазом за последние 2000 лет люди видели не менее десяти сверхновых. Одну из них описали китайские и арабские астрономы в 1054 г., эта сверхновая дала Крабовидную туманность. В результате горения и взрыва звезд множество химических элементов попадает в межзвездную среду. А дальше всё повторяется сначала: остатки сверхновых конденсируются в плотные образования, из которых под действием гравитационных сил возникают звезды нового поколения. Эти звезды (к ним принадлежит и наше Солнце) с самого начала уже содержат в своем составе примесь тяжелых элементов. Эти же элементы содержатся и в окружающем эти звезды газопылевых облаках, из которых образуются планеты. И если с момента Большого взрыва прошло около 14 миллиардов лет, то возраст Солнечной системы значительно меньше — около 5 миллиардов лет.

Существует общее правило — чем больше заряд ядра Z, то есть чем оно тяжелее, тем меньше таких нуклидов во Вселенной. Однако это правило выполняется не всегда. Например, в земной коре мало легких нуклидов ⁶Li, ⁹Be, ¹⁰B, ¹¹B. Предполагают, что эти нуклиды по

ряду причин не могут образоваться в недрах звезд, а «откалываются» от более тяжелых ядер в межзвездном пространстве под действием космических лучей. Таким образом, соотношение различных элементов на Земле — отголосок бурных процессов в космосе, которые происходили миллиарды лет назад.

УДК 54(03) ББК 24.12я2 Л39

Леенсон И. А.

Л39

Большая энциклопедия химических элементов. Периодическая таблица Менделеева / И. А. Леенсон. — Москва : ОГИЗ, АСТ, 2014. — 168 с. : ил.

ISBN 978-5-17-088424-7

Эта книга о веществах и элементах, из которых все мы состоим и которые окружают нас на каждом шагу. Основываясь на Периодической системе химических элементов Д. И. Менделеева, в книге рассказывается про все известные в настоящее время химические элементы. Вы узнаете об их свойствах, истории открытий и происхождении названий, о гениальных ученых; о том, как добывают необходимые для промышленности химические элементы и как их использует человек.

Книга адре́сована школьникам среднего и старшего возраста, содержит дополнительный познавательный материал к урокам химии в средней школе.

УДК 54(03) ББК 24.12я2

Общероссийский классификатор продукции ОК-005-93, том 2; 953000 — книги и брошюры.

ISBN 978-5-17-088424-7

© И. А. Леенсон, текст, 2014 г. © ООО «Издательство АСТ»

Научно-популярное издание

Леенсон Илья Абрамович

Большая энциклопедия химических элементов. Периодическая таблица Менделеева

Зав. редакцией О. Сухарева С. Мирнова Л. Ковальчук Бильдредактор Технический редактор Цветоделение С. Гвоздевой А. Орловой

Подписано в печать 07.11.2013. Формат 60×90/8. Печать офсетная. Бумага мелованная. Гарнитура Myriad Pro. Усл. печ. л. 21,0. Тираж 3000 экз. Заказ № .

ООО «Издательство АСТ». 129085, г. Москва, Звездный бульвар, д. 21, стр. 3, ком. 5

Адрес в Интернете: www.ast.ru